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to structuro calculational use of the computer. Such sreas will inevitably be served by
symbolic models and symbolic inferencé techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that it is
urgent for Al to “go public” in the manner intended by the Handbook.

Soveral othor writers have recognized a need for more widespread knowledge of Al and
have attempted to heip fill the vacuum. Lay reviews, In particular Margaret Boden's
Artiticial Intelligence and Natural Man, have tried to explain what Is important and
Intoresting about Ai, and how research In Al progresses through our programs. In addition,
there aro a fow textbooks that attompt to present a more detalled view of selected areas
of Al, for the serious student of computer sclience. But no textbook can hope to describe all
of the sub-areas, present brief explanations of the important ideas and techniques, and
review the 40 or 60 most important Al systems.

The Handbook contains several different types of articles. Key Al ideas and
techniquos are describod In core articles (e.g. basic concepts In heuristic search, semantic |
nots). Important individual Al programs (e.9. SHRDLU) are described in separate articles that |
Indicate among other things the designer's goal, the techniques employed, and the reasons |
why the program Is important. Overview articles discuss the problems end approaches In
each major area. The overview articles should be particularly useful to those who seek a
summary of the underlying issues that motivate Al research.




Evontually tho Handbook will contain approximately two hundred articles. We hope that
tho appearance of this matorial will stimulete Interaction and cooperation with other Al
rosoarch sitos. We lock forward to boing advised of our inevitable errors of omission and
commission. And for a fleld as fast moving as Al, it is important that its practitioners alert us
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A. Overview

In Artificlal Intelligence the taerms problem solving and search refor to a large body of core
Ideas that deal with deduction, inference, planning, commonsense reasoning, theorem proving,
and related processes. Applications of these general ideas are found in programs for natural
language understanding, information retrieval, automatic programming, :cbotics, scene
analysis, game playing, expert systems, and mathematical theorem proving. In this chapter
we examine search as a tool for problem solving In a more limited araa. Most of the
examples to be considered In detail are problems that are relatively easy to formalize. Some
typical problems are

-- finding the solution to a puzzle;
-- finding a proof for a theorem in logic or mathematics;

-= finding the shortest path connecting a set of nonequidistant points
(the traveling-salesman problem);

-- finding a sequence of moves that will win a game, or the best move
to make at a given point in a game; and

-- finding a sequence of transformations that will solve a symbolic
Integration problem.

Organization of the Chapter

This overview takes a general look at search in problem solving, indicating some
connections with topics considered in other chapters. The articles in the next section,
Section B, describe the problem representations that form the basis of search techniques.
The detalled axamples there of state-space and problem-reduction representations will
clarify what is meant by words like "search" and "problem solving" in Al. Readers to whom
the subject of search is new are encouraged to turn to those articles for more concrete
presentations of the fundamental ideas. Section B also discusses game trees, which are a
historically and conceptually important class of representations.

Section C, Search Methods, deals with the algorithms that use these various problem
representations. Blind search algorithms, which treat the search space syntactically, are
contrasted with Aeuristic methods, which use information about the nature and structure of
the problem domain to limit the search. Various search algorithms are presented in full.

Finally, Section D reviews some well-known early programs based on search. It also
describes two programs, STRIPS and ABSTRIPS, that introduce the closely related topic of
planning in problem solving. This general topic, however, is treated more fully under Planning.

Components of Search Systems

Problem-solving systems can usually be described in terms of three main components.
The ftirst of these Is a darabase, which describes both the current task-domain situation and
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the goal. The database can consist of a variety of different kinds of data structures
Including arrays, lists, sets of predicate calculus expressions, property list structures, and
semantic networks. In theorem proving, for example, thae current task-domain situation
consists of assertions representing axioms, lemmas, and theorems already proved; the goal is
an assertion representing the theorem to be prova:. In information retrieval applications, the
current situation consists of a set of facts, and the goal is the query to be answered. In
robot problem solving, a current situation is a worid model consisting of statements describing
the physical surroundings of the robot, and the goal is a description that is to be made true
by a sequence of robot actions.

The second component of problem-solving systems is a set of operators that are used to
manipulate the database. Some examples of operators include:

-- in theorem proving, rules of inference such as modus ponens and
resolution;

-- in chess, rules for moving chessmen;

-=- in symbolic integration, rules tor simplitying the forms (o be

integrated, such as Integration by parts or trigonometric
substitution.

Sometimes the set of operators consists of only a few general rules of inference that
generate new assertions from existing ones. Usually it is more efficient to use a large

number of very specialized operators that generate new assertions only from very specific
existing ones.

The third component of a problem-solving system is a confrol strategy for deciding what
to do next--in particular, what operator to apply and where to apply It. Sometimes control is
highly centralized, In a separate control executive that decides how problem-solving

resources should be expended. Sometimas contral is diffusely spread among the operators
themselves.

Another aspect of control strategy is its effect on the contents and organization of the
database. In general, the object is to achieve the goal by applying an appropriate sequence
of operators to an Initial task-domain situation. Each application of an operator modifies the
situation in some way. If several different operator sequences are worth considering, the
representation often maintains data structures showing the effects on the task situation of
each alternative sequence. Such a representation permits a control strategy that
Investigates various operator sequences in parallel or that alternates attention among a
number of sequences that look relatively promising. This is the character of most of the
algorithms considered in this chapter; they assume a database containing descriptions of
multiple task-domain situations or states (see, e.g., Cl, Blind State-space Search). It may be,
however, that the description of a task-domain situation is too large for multiple versions to
be stored explicitly; In this case, a backtracking control strategy may be used (see Al
Programming Languages). A third possibility, available in some types of problems such as
theorem proving, exists where the application of operators can add new assertions to the
description of the task-domain situation but never can require the deletion of existing
assertions. In this case, the database can describe a single, Incrementally changing task-

domain situation; multiple or alternative descriptions are unnecessary. (See Theorsm
Proving.) :
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Reasoning Forward and Reasoning Backward

The application of operators to those structures in the database that describe the
task-domain situation--to produce ¢ moditied situation--is often calied reasoning forward. The
object is to bring the situation, or problem state, forward from its initial configuration to one
satisfying a goal condition. For exampie, an initial situation might be the placement of
chessmen on the board at the beginning of the game; the desired goal, any board
configuration that is a checkmate; and the operators, rules for the legal moves in chess.

An alternative strategy, reasoning backward, involves using another type of operator,
which is applied not to a current task~domain situation but to the goal. The goal statement,
or problem statement, is converted to one or more subgoals that are (one hopes) easier to
solve and whose solutions are sufficient to solve tne oriainal problem. These subgoals may in
turn be reduced to sub-subgoals, and so on, until each of them is either accepted to be a
trivial problem or its solution is accomplished by the solution of its subproblems. For example,

given an initial goal of integrating 1/{cos x)? dx, and an operator permitting 1/(cos x) to be
rewritten as (sec x), one can work backward toward a restatement of the goal In a form

whose solution is immediate: The integral of (sec x)? is tan x.

The tormer approach is said to use forward recsoning and to be data-driven or bortom-up.
The latter uses backward reasoning and s goal-directed or fop-down. The distinction between
forward and backward reasoning assumes that the current task-domain situation or state is
distinct from the goal. If one chooses to say that a current state Is the state of having a
particular goal, the distinction naturally vanishes.

Much human problem-solving behavior is observed to involve reasoning backward, and
many artificial intelligence programs are based on this general strategy. In addition,
combinations of forward and backward reasoning are possible. One important Al technique
involving forward and backward reasoning is called means-ends analysis; it Involves comparing
the current goal with a current task-domain situation to extract a difference between them.
This difference is then used to index that (forward) operator most relevant to reducing the
difference. If this especially relevant operator cannot be immediately applied to the present
problem state, subgoals are set up to change the problem state so that the relevant
operator can be applied. After these subgoals are solved, the relevant oporator is applied
and the resuiting, modified situation becomes a new starting point from which to solve for the
original goal. (See D2, GPS; and D5, STRIPS.)

State Spaces and Problem Reduction

A problem-solving system that uses forward reasoning and whose operators each work
by producing a single new object--a new state--in the database is said to represent
problems in a state-space representation (see BY).

A distinction may be drawn between two cases of backward reasoning. In one, each
application of an operator to a problem yields exactly one new probiem, whose size or
difficulty is typically slightly less than that of the previous problem. Systems of this kind will
aiso be referred to, in this chapter, as employing state-space representations. Two
instances of such representations are presented later in the chapte.. One example is the
Loglc Theorist program (O1); the other Is the backward-reasoning part of Pohl's bidirectional
search (C1 and C3d).

B
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A more complex kind of backward reasoning occurs if applying an operator may divide
the problem into a set of subproblems, perhaps each significantly smaller than the original. An

example would be an operator changing the problem of integrating 2/(x%-1) dx into the three
subproblems of integrating 1/(x-1) dx, integrating -1/(x+1) dx, and adding the resuits. A
system using this kind of backward reasoning, distinguished by the fact that its operators
can change a single object into a conjunction of objects, will be said to employ a problem-
reduction representation. The relationship between problem-reduction and state-space
representaticns Is examined further at the end of Article B2.

There may or may not be constraints on the order in which the subproblems generated
by a problem-reduction system can be solved. Suppose, for example, that the original
problem Is to Integrate (f(x) + g(x)) dx. Applying the obvious operator changes it to the new
problem consisting of two integrations, f(x)dx and g(x)dx. Depending on the
representation, the new problem can be viewed as made up of either (a) two integration

| subproblems that can be solved in any order, or (b) two integration subproblems pius the
third subproblem of summing the integrals. In the latter case, the third task cannot be done
until the first two have been completed.

Besides the state-space and problem-reduction representation approaches, other
variations on problem representation are possible. One occurs in connection with game-
playing problems, which differ from most other problems by virtue of the existence of
adversary moves. A game-playing problem must be represented so as to take into account
the opponent's possibie moves as well as the player's own. The usual representation is a
game tree (see B3), which shares many features of a problem-reduction representation.
Another variation is relevant to theorem-proving systems, many of which use forward
reasoning and operators (rules of inference) that act on conjunctions of objects in the E
database. Although the representations discussed here assume that each operator takes ; i
only a single object as Input, it is possible to define a theorem-proving representation that
provides for multiple-input, single-output operators (Kowalski, 1972; see Theorem Proving).

Graph Representation

In either a state-space or a problem-reduction representation, achieving the desired
goal can be equated with finding an appropriate finite sequence of applications of available
operators. While what one Is primarily interested in--the goal situation or the sequence that j
leads to it--may depend on the problem, the term search can always be understood, without
misleading consequences, as referring to the search for an appropriate operator sequence.

Tree structures are commonly used in implementing control strategies for the search.
In a state-space representation, a tree may be used to represent the set of problem states
produced by operator applications. In such a representation, the root node of the tree
represents the Initial problem situation or state. Each of the new states that can be |
produced from this initial state by the application of just one operator is represented by a
successor node of the root node. Subsequent operator applications produce successors of
these nodes, etc. Each operator application is represented by a directed arc of the tree. In
general, the states are represented by a graph rather than by a tree since there may exist
different paths from the root to any given node. Trees are an important special case,
however, and it is usually easier to explain their use than that of graphs. (See Bl, State-
space Representation.) |
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In addition to these ordinary trees and graphs used for state-space representations,
speclalized ones called AND/OR graphs are used for problem-reduction problem-solving
methods. For problems in which the goal can be reduced to sets of subgoals, AND/OR graphs
provide a means for keeping track of which subgoals have been attempted and of which
combinations of subgoals are sufficient to achieve the original goal (see Article B2).

The Search Space

The problem of producing a state that satisties a goal condition can now be formulated
as the problem of searching a graph to find a node whose associated state description
satisfies the goal. Similarly, search based on a problem-reduction representation can be

formulated as the search of an AND/OR graph.
b d

It should be noted that there is a distinction between the graph to be searched and 4

the tree or graph that Is constructed as the search proceeds. In the latter, nodes and arcs s ‘
can be represented by explicit data structures; the only nodes included are those for which .

paths from the initial state have actually been discovered. This explicit graph, which grows
as the search proceads, will be referred to as a searck graph or search tree.

In contrast, the graph to be searched is ordinarily not explicit. It may be thought of as
having one node for every state to which there exists a path from the root. It may even be
thought of, less commonly, as having one node for every state that can be described,
whether or not a path to it exists. The implicit graph will be called the state space or, if
generalized to cover non-state-space representations such as AND/OR graphs or game
trees, the search space. Clearly, many problem domains (such as theorem proving) have an
infinite search space, and the search space in others, though finite, is unimaginably large.
Estimates of search space size may be based on the total number of nodes (however A
defined) or on other measures. In chess, for example, the number cf different complete plays i

of the average-length game has been estimated at 10'%% (Shannon, 1960, 1956), although
the number of "good" games is much smaller (see Good, 1968). Even for checkers the size

of the search space nhas been estimated at 10%° (Samuel, 1963).

d
|

Searching now becomes a problem of making just enough of the search space explicit
in a search graph to contain a solution of the original goal. If the search space is a general
graph, the search graph may be either a subgraph, or a subgraph that is also a tree, or a
tree obtained by representing distinct paths to one search space node with duplicate search
graph nodes.

Limiting Search

The critical problem of search is the amount of time and space necessary to find a
solution. As the chess and checkers estimates suggest, exhaustive search is rarely feasible
for nontrivial problems. Examining all sequences of n moves, for example, would require
operating In a search space in which the number of nodes grows exponentially with n. Such
a phenomenon is called a combinatorial explosion.

There are several complementary approaches to reducing the number of nodes that a 9
search must examine. One important way Is to recast the problem so as to reduce the size of
the search space. A dramatic, if well-known, example is the mutilated chessboard probiem:
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Suppose two diagonaily opposite corner squares are removed from a
standard 8 by 8 square chessboard. Can 31 rectangular dominoes,
each the size of exactly two squares, be so placed as 10 cover
precisely the remaining board? (Raphael, 1976, p. 31)

it states are defined to be configurations of dominoes on the mutilated board, and an
operator has the effect of placing a domino, the search space for this problem is very large.
If, however, one observes that every domino placed must cover both a red square and a
black one and that the squares removed are both of one color, the answer is immediate.
Unfortunately, little theory exists about how to find good probiem representations. Some of
the sorts of things such a theory would need to take into account are explored by Amarel
(1968), who gives a sequence of six representations for a single problem, each reducing the
search space size by redefining the states and operators.

A second aspect conceriis search efficiency within a given search space. Several
graph- and tree-searching methods have been developed, and these play an important role in
the control of problem-solving processes. Of special interest are those graph-searching
methods that use Aeuristic knowledge from the problem domain to help focus the search. In
some types of problems, these heuristic search techniques can prevent a combinatorial
explosion of possible solutions. Heuristic search is one of the key contributions of Al to
efficlent problem solving. Various theorems have been proved about the properties of search
techniques, both those that do and those that do not use heuristic information. Briefly, it has
been shown that certain types of search methods are guaranteed to find optimal solutions
(when such exist). Some of these methods, under certain comparisons, have also been
shown to find solutions with a minimal amount of search effort. Graph- and tree-searching
algorithms, with and without the use of heuristic information, are discussed at length in

Section C.

A third approach addresses the question: Given one representation of a search
problem, can a problem-solving system be programmed to find a better representation
automatically? The question differs from that of the first approach to limiting search in that
here it is the program, not the program designer, that is asked to find the improved
representation. One start on answering the question was made by the STRIPS program (O5).
STRIPS augments its initial set of operators by discovering, generalizing, and remembering
macro-operators, composed of seguences of primitive operators, as it gains problem-solving
experience. Another idea was used in the ABSTRIPS program (06), which implements the
idea of planning, In the sense of defining and solving problems in a search space from which
unimportant detalls have been omitted. The detalls of the solution are filed In (by smaller
searches within the more detaiied space) only after a satisfactory outline of a solution, or
plan, has been found. Planning is a major topic itself; for further discussion, see Planning.

The Meaning of "Heuristic" and "Heuristic Search"

Although the term "heuristic" has long been a key word in Al, its meaning has varied
both among authors and over time. In general, its usage is illustrated by examplie better than
by definition, and several of the prime examples are included In the programs of Section D.
However, a brief review of the ways "heuristic" and "heuristic search" have been used may
provide a useful warning against taking any single definition too seriously.
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As an adjective, the most frequently quoted dictionary definition for "heuristic" Is
"sarving to discover." As a noun, referring to an obscure branch of philosophy, the word |
meant the study of the methods and rules of discovery and invention (see Polya, 1957, p.
112).

When the term came Into use to describe Al techniques, some writars made a
distinction between methods for discovering solutions and algorithms for producing them.
Thus Newell, Shaw, and Simon stated In 1967: "A process that may solve a given problem, |
but offers no guarantees of doing so, is called a Aeuristic for that problem" (Newell, Shaw, &
Simon, 1963b, p. 114). But this meaning was not universally accepted. Minsky, for example,
said In a 1861 paper:

.

The adjective "heuristic," as used here and widely In the literature, means related & |
to improving problem-solving performance; as a noun it Is also used in regard to any
method or trick used to improve the efficiency of a problem-solving program. . . .
But Iimperfect methods are not necessarily heuristic, nor vice versa. Hence
"heuristic" should not be regarded as opposite to "foolproof"; this has caused
some confusion In the literature. (Minsky, 1963, p. 407n.)

These two definitions refer, though vaguely, to two different sets: devices that improve
efficlency and devices that are not guaranteed. Feigenbaum and Feldman (1963, p. 6)
apparently limit "heuristic" to devices with both properties:

AT
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A heuristic (heuristic rule, heuristic method) is a rule of thumb, strategy, trick,
simplification, or any other kind of device which drastically limits search for
solutions in large problem spaces. Heuristics do not guarantee optimal solutions;
in tfact, they do not guarantee any solution at all; all that can be said for a useful
heuristic is that it offers solutions which are good enough most of the time.

Even this definition, however, does not always agree with common usage, because it lacks a
historical dimension. A device originally introduced as a heuristic in Feigenbaum and
Feldman's sense may later be shown to guarantee an optimal solution after all. When this
happens, the label "heuristic" may or may not be dropped. It has not been dropped, for
example, with respect to the A* algorithm (C3b). Alpha-beta pruning (C5b), on the other
hand, is no longer called a heurlstic.

It should be noted that the definitions quoted above, ranging In time from 19567 to
1863, refer to heuristic rules, methods, and programs, but they do not use the term
"heuristic search." This composite term appears to have been first introduced in 1966 in a
paper by Newell and Ernst, "The Search for Generality" (see Newell & Simon, 1972, p. 888).
The paper presented a framework for compering the methods used in problem-solving
programs up to that time. The basic framework, there called heuristic search, was the one
called state-space search in the present chapter. Blind search methods were included within
the heuristic search paradigm.

A similar meaning for heuristic search appears in Newell and Simon, 1972 (pp. 91-1056).
Again no contrast Is drawn between heuristic search and blind search; rather, heuristic
search is distinguished from a problem-solving method called generate-and-test. The
difference between the two is that the latter simply generates elements of the search
space (l.e., states) and tests each in turn until it finds one satisfylng the goal condition;
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whereas in heuristic search the order of generation can depend both on Information gained in
previous tests and on the characteristics of the goal. But the Newell and Simon distinction is
not a hard and fast one. By thelr 1976 Turing Lecture, they seem to have collapsed the two

methods into one:

Heuristic Search. A second law of qualitative structure for Al Is that symbol
systems solve problems by generating potential solutions and testing them, that
Is, by searching. (Newell & Simon, 1976, p. 126)

In the present chapter, the meaning attached to *heuristic search" stems not from
Newell and Simon but from Nilsson, whose 1871 book provides the most detalled and
influential treatment of the subjaect that has yet appeared. For Nilsson, the distinction
between heuristic search and blind search is the important one. Blind search corresponds
approximately to the systematic generation and testing of search space elements, but it
operates within a formalism that leaves room for additional information about the specific
problem domain to be Introduced, rather than excluding it by definition. If such information,
going beyond that needed merely to formulate a class of problems as search problems, is in
fact introduced, it may be possible to restrict search drastically. Whether or not the
rastriction Is foolproot, the search Is then called heuristic rather than blind.
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B. Problem Representation
B1. State-space Representation

A state-space representation of a problem uses two kinds of entities: states, which are
data structures giving "snapshots" of the condition of the problem at each stage of its
solution, and operators, which are means for transforming the problem from one state to
another.

A straightforward example of state-space representation is the simple, well-known
puzzle called the 8-puzzle. An 8-puzzle is a square tray containing 8 square tiles of equal
size, numbered 1 to 8. The space for the 9th tile is vacant (see Figure 1).

XER T
4 8
EESE

Figure 1. An 8-puzzle.

A tile may be moved by sliding It vertically or horizontally into the empty square. The problem
Is to transform one tile configuration, say that of Figure 1, into another given tile
configuration, say that of Figure 2.

11213
8 4
7161|5

Figure 2. A solution configuration of
the 8-puzzle.

A state Is a particular configuration of tiles; each state might be represented by a 3 x 3
matrix, similar to Figures 1 and 2. The operators, corresponding to possible moves, might be
defined with separate operators for each of tiles 1 through 8. However, a more concise
definition Is made possible by viewing the empty square as the object to be moved and
stating the operators in terms of the movements of this square. In this formulation, only four
operators are used:

"up» move the blank up one square),
“DOWN*" move the blank down one square),
"LEFT" move the blank left one square
"RIGHT* move the blank right one squaros.

An operator may be Iinapplicable in certain states, as when it would move the blank outside
the tray of tiles.

The set of all attainable states of a problem is often called its state space. The 8-
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puzzle, for example, has a state space of size 9!/2--since there are 8! configurations of the
tiles but only half this number can be reached from any given starting configuration. This
comes to only 181,440 possible states. For comparison, sea the discussion of chess and
checkers in the Overview article.

The four operators defined for the 8-puzzie form a set of partial functions on the state
space: Each operator, if It applies to a given state at all, returns exactly one new state as
Its result. In more complex problems, however, the operators often contain variables. |f, for
a particular state and operator, the variables can be instantiated in more than one way, then
each Instantiation yields one new state, and the operators of the problem, if they are to be
considered as defining functions, are more accurately termed operator schemata.

The complete specification of a state-space problem has three components. One is a
sat O of operators or operator schemata. In addition, one must define a set S of one or more
initial states and find a predicate defining a set G of goal states. A state-space problem Is
then the triple (S, O, G). A solution to the problem Is a finite sequence of applications of
operators that changes ar initiai state into a goal state.

A state space can be treated as a directed graph whose nodes are states and whose
arcs are operators transforming one state to another. For example, if state 1 is a state to
which any of three operators can be applied, transforming it to state 2, 3, or 4, then the
corresponding graph would be a3 In Figure 3. Nodes 2, 3, and 4 are called the successors of
node 1.

node
1

node node node
2 3 4

Figure 3. Directed arcs.

In graph notation, a solution to a state-space problem Is a path from an Initial node to & goal
node. In Figure 4, one solution would be an application of operator B twice, followed by
operator D, to reach the indicated goal node or final state. There may be other final states
and multiple ways to reach a particular final state.

initial state
®

operator A / oparator B

state 1
state 2

operator B / operator €
state state 4
operator 0

final state

Figure 4. A state-space graph.
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A common varlation on state-space problems requires finding not just any path but one
of minimum cost between an initial node and a goal node. In this case, each arc of the graph
Is labeled with its cost. An example is the traveling-salesman problem: Given a number of
cities to be visited and the mileage between each pair of cities, find a minimum-mileage trip
beginning and ending at city A that visits each of the other cities exactly once. An example
mileage chart and the corresponding state-space graph are shown in Figure 6. Because
different paths to the same city represent distinct partial solutions, each state Is identified
not jJust as a city name but as a list of the cities visited so far.
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Figure 5. A traveling-salesman problem.

The desired solution Is A-B-D-C-A, or its reversal, with a total mileage of 26. (The two
bottom levels of the graph could be omitted, since the mileage of each tour of n cities is
determined by the first n-1 cities chosen to be visited.)

Because the state-space graph is usually too large to represent explicitly, the probiem
of searching for a solution becomes one of generating just enough of the graph to contain

the desired solution path. Saarch methods are discussed in Article Cl, Blind State-space
Search, and Section C3, Heuristic State-space Search.
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B2. Problem-reduction Representation

Often distinguished from the state-space representation of problems Iis a technique
called problem-reduction representation. In the problem-reduction approach, the principal data
Structures are problem descriptions or goals. An Initial problem description is given; it is
solved by a sequence of transformations that ultimately change it into a set of subproblems
whose solutions are immediate. The transformations permitted are defined as operators. An
operator may change a single problem into several subproblems; to solve the former, all the
subproblems must be solved. In addition, several different operators may be applicable to a
single problem, or the same operator may be applicable in several different ways. In this
case It suffices to solve the subproblems produced by any one of the operator applications.
A problem whose solution is immediate is called a primitive problem. Thus, a problem
representation using problem reduction is defined by a triple consisting of

(a) an Initial problem description,
(b) a set of operators for transforming problems to subproblems, and
(c) a set of primitive problem descriptions.

Reasoning proceeds backward from the initial goal.

An Example

An example that lends itself nicely to problem-reduction representation Is the famous
Tower of Hanol puzzle. In one common version there are three disks, A, B, and C, of
graduated sizes. There are also three pegs, 1, 2, and 3. Initially the disks are stacked on
peg 1, with A, the smallest, on top and C, the largest, at the bottom. The problem is to
transfer the stack to peg 3, as In Figure 1, given that (a) only one disk can be moved at a
time, and (b) no disk may be placed on top of a smaller disk.

Initial State Goal State

A
PRI R
C

peg 1 peg 2 peg 3 peg 1 peg 2 peg 3

Figure 1. The Tower of Hanoi puzzle.

Only one operator need be used in the solution: Given distinct pegs i, j, and k, the
problem of moving a stack of size n > 1 from peg | to peg k can be replaced by the three
problems:

(a) moving a stack of size n-1 from i to j,
(b) moving a stack of size 1 from | to k, and
(c) moving a stack of size n-1 from j to k.

The only primitive problem is that of moving a single disk from one peg to another, provided
no smaller disk is on the receiving peg. If a smaller disk were present, this problem would be
unsolvable (in view of the definition of the only avallable operator).

i e
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Each problem description can now be given by specitying the size n of the stack to be
moved, the number of the sending peg, and the number of the receiving peg. The criginal
problem, moving & stack of three disks from peg 1 to peg 3, would then be represented as
(n =3, 1 to 3). and the transformation of the original problem to primitive problems can be
represented by a tree:

{1
1 nlw 3
|
153 é% ,‘é%
1 t(IJ 2 1 to 3 2 ttl) 3
(§{ <«"; (7) <é; (61 (le)
n= n= n=1 n= n= n=]
1 to 3 I to 2 3 to 2 2 to 2 t0 3 1 to 3

Figure 2. Solution of the Tower of Hanoi puzzle.

There happen to be two possible operator sequences that transform the original
problem to primitive problems: Apply the operator to node 1, then node 2, and then node 4;
or apply the operator to node 1, then node 4, and then node 2. Since node 3 is a primitive
probiem, it needs no further attention. Node 2 represents the subproblem of moving the top
two disks on peg 1 to peg 2. This subproblem is solved by expanding it to the primitive
problems at nodes (6), (6), and (7)--which are solved by moving the smallest disk to peg 3,
moving the middle disk to peg 2, and finally putting the small disk back on top of the middie
one.

The sequence of operators to be applied should be distinguished from the sequence of
actions to be taken to achieve the goal. in the Towsr of Hanol example, the actions are the
actual movaments of the disks. This sequence is given by the terminal nodes of the tree,
read left to right. Whethar or not it Is considered important to assemble such a sequence of
actions depends on the particular problem domain.

AND/OR Graphs

In the example above, a tree was used to display a problem-reduction solution to the
Tower of Hanol puzzle. The tree notation must be generalized if it is to reprasent the full
variety of situations that may occur in problem reduction. This generalized notation for
problem reduction is called an AND/OR graph.

According to one common formulation (Nilsson, 1971), an AND/OR graph is constructed
according to the following rules:

1. Each node represents either a single problem or a set of problems to be
solved. The graph contalns a start node corresponding to the original problem.
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2. A node representing a primitive problem, called a te¢rminal node, has no
descendants.

3. For each possible application of an operator to problem P, transtorming it to a
set of subproblems, there is a directed arc from P to a node representing the
resulting subproblem set. For example, Figure 3 illustrates the reduction of P
to three different subproblem sets: A, B, and C. Since P can be solved if any
one of sets A, B, or C can be solved, A, B, and C are called OR nodes.

o LD,

Figure 3. An AND/OR tree.

4. Figure 3 illustrates further the composition ot sets A, B, and C: A= (D, E), B
consists of a single (unnamed) problem, and C = (F, G, H}. In general, for each
node representing a set of two or more subproblems, there are directed arcs
from the node for the set to individual nodes for each subproblem. Since a set
of subprobiems can be solved only if its members can a/! be soived, the
subproblem nodes are called AND nades. To distinguish them from OR nodes,
the arcs leading to AND node successors of a common parent are joined by a
horizontal line.

6. A simplification of the graph produced by rules 3 and 4 may be made in the
speclal case where only one application of an operator is possible for problem
P and where this operator produces a set of more than one subproblem. As
Figure 4 illustrates, the intermediate OR node rapresenting the subproblem set

may then be omitted:
/—WLP \
F 6 W

Figure 4. An AND/OR tree with one
operator at problem P.

Another example of this construction was given in Figure 2.

In the figures above, every node represents a distinct problem or set of problems.
Since each node except the start noce has just one parent, the graphs are in fact AND/OR
trees. As a variation on Figure 3, assume that problem A is reducible to D and E; and problem
C, to E, G, and H. Then E may be represented either by two distinct nodes, or by a single
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node as shown in Figure §. The choice makes a difference in the search algorithms which
are discussed later In the chapter. For example, if node E is In turn reducible to C, the
general graph representation simply adds another directed arc to Figure 6, but the

corresponding tree becomes infinite.
/ |

Y as

Figure 6. An AND/OR graph.

The constructions discussed so far concern graphs depicting the entire problem search
space. To find a solution to the initial problem, one need only build enough of the graph to
demonstrate that the start node can be solved. Such a subgraph is called a solution graph or,
in the more restricted case of an AND/OR tree, a solution tree. The following rules apply:

A node is solvable if:

(a) It is a terminal node (a primitive problem);

(b) itis a nonterminal node whose successors are AND nodes that are
all solvable; or

(c) it is a nonterminal node whose successors are OR nodes and at
least one of them is solvable.

Similarly, a node Is unsolvable If:

(a) it is a nonterminal node that has no successors (a nonprimitive
problem to which no operator applies);

(b) it is a nonterminal node whose successors are AND nodes and at
least one of them is unsolvable; or

(¢) It is a nonterminal node whose successors are OR nodes and all of
them are unsolvable.

Methods of searching an AND/OR graph for such a solution are discussed in Articles C2 and
Ca4.

Relation between Problem-reduction and State-space Representations

Some Interesting general relationships can be found between problem-reduction and
state-space representations. In the first place, although one representation often seems
the more natural for a given problem, it is often possible to recast the problem definition so
that it uses the other form. For example, the Tower of Hanoi puzzle can also be solved by a
state-space search using operators that move a single disk and that represent all the legal
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moves in a given configuration. In comparison to the problem-reduction representation, which
In fact gives an algorithm for solving the puzzle, the state-space representation would be a
Poor one since it leaves room for searching down unnecessarily long paths.

Second, it Is possible to translate mechanically between state-space representations
and problem-reduction representations without any fundamental shift in the way a problem is
viewed. The ways of making such translations can provide helpful insight into many search
programs in which the concepts of state-space and problem-raduction representation appear
to be intermixed. Several translation schemes are described below. (Some readers may
wish to skip the following material at first reading.)

State space to problem reduction. Two approaches suggest themselves for
translating state-space representations to problem-reduction reprasentations. In one, the
state-space graph is understood as an AND/OR graph containing only OR nodes. Each state
of the state-space version corresponds to the problem of getting from that state to a goal
state; and a goal state of the state space becomes the primitive problem of getting from
that goal state to itself. In other words, data structures reprasenting states are simply
reinterpreted as representing problem descriptions, where a problem consists of state
information together with an implicit goal.

Alternately, there is a slight variation of the first approach that requires redefining the
operators of the state-space representation. Each such operator, taking state | to state I
becomes an operator applicable to the problem of getting from state i to a goal state. Its
effect is to reduce the problem to a pair of subproblems: (a) go trom state | to state J (a
primitive problem), and (b) go from state | to a goal state. Figure 6 iliustrates this
correspondence.

State i Go from state 1 to goal state
State J
Go from state 1 Go from state j
to state g to goal state
(a primitive problem
(6a) (6b)

Figure 6. (a) Part of a state-space tree; (b) the corresponding
part of an AND/OR (problem-reduction) tree.

Problem reduction to state space. The translation from a problem-reduction
representation to a state-space representation is a littie more complex, assuming that the
problem-reduction operators in fact produce AND nodes. The initial problem of the problem-
reduction representation can be understood as having two components: (a) the description
of the goal to be achieved, as discussed at the beginning of this article, and (b) the
description of an Initial state of the world. These components will be denoted a0 and s0,
respectively. Some examples are

== 20 = a theorem to be proved, and sQ = the axioms from which to prove it;

== 80 = a configuration of objects to be achleved, and sQ = their existing configuration.
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Each state S of the corresponding state-space representation is a pair consisting of a stack
of goals (gi, ..., g0) to be achieved and a current state s of the world. Thus, the initial state
S0 of the state-space representation Is SO = ((g0), s0). A final state is one in which the
stack of.goals to be achieved has been emptied.

For each problem-reduction operator, mapping a problem or goal g to a set of subgoals
{gm, ..., gn}, the state-space representation has a corresponding operator mapping state S1,
where S1 = ((gi, ..., g0), s), to a state S2 In which {gm, ..., gn} have been added to th~ top
of the goal-stack (in the order in which they should be carried out, if relevant), and the .ate
of the world s Is unchanged; that is, S2 = ((gm, ..., gn, gi, ..., g0), s).

The state-space representation also needs a second type of operator, which becomes
applicable whenever the goal on top of the stack represents a primitive problem. Its function
is to remove that primitive problem from the stack and, at the same time, to change the state
s to reflect its solution. In the Tower of Hanoi puzzle, for example, the new state would
reflect the changed position of a single disk. In a theorem-proving problem, the new state
would differ from the old one by the addition of one formula to those that had been given as
axioms or established from having solved previous subproblems. A representation of this
type Is used explicitly in Fikes and Nilsson's STRIPS program, described in Article DS.

References

See Jackson (19874), and Nilsson (1971).

L o

(S Fr )




18 Al Handbook

B3. Game Trees

'} Most games played by computer programs, including checkers, chess, go, and tic-tac-
toe, have several basic features in common. There are two players who alternate in making
moves. At each turn, the rules define both what moves are legal and the effect that each
possible move will have; there is no element of chance. In contrast to card games in which
the players' hands are hidden, each player has complete information about his opponent's
position, Including the choices open to him and the moves he has made. The game begins
from a specified state, often a configuration of men on a board. It ends in a win for one
player and a loss for the other, or possibly in a draw.

A complete game (ree is a representation of all possible plays of such a game. The root
node Is the initial state, in which It is the first player's turn to move. Its successors are the
states he can reach in one move; thelr successors are the states resulting from the other
player's possible replies; and so on. Terminal states are those representing a win, loss, or
draw. Each path from the root node to a terminal node gives a different complete play of the
game.

An important difference between a game tree and a state-space tree (Article Bl) is
that the game tree represents moves of two opposing players, say A and B. An AND/OR tree
(Article B2), however, is sufficient to reflect this opposition. The game tree is ordinarily
drawn to represent only one player's point of view. In a game tree drawn from A's
standpoint, A's possible moves from a given position are represented by OR nodes since they
are aiternatives under his own control. The moves that B might make in return are AND
nodes, since they represent sets of moves to which A must be able to respond. Because the
players take turns, OR nodes and AND nodes appear at alternate levels of the tree. In the
language of AND/OR graphs, the tree displays the search space for the problem of showing !
that A can win. A node representing a win for A corresponds to a primitive problem; a node
representing a win for B or a draw, to an unsolvable problem. Unlike the usual AND/OR graph
terminology, both of these kinds of nodes will be called t¢rminal nodes.

As an example, Figure 1 shows a portion of the game tree for tic-tac-toe. The players
are X and O, X has the first move, and the tree is drawn from X's standpoint. Positions are
considered Identical if one can be obtained from the other by rotation or reflection of the
grid. The tree could also be drawn from O's standpoint, even though X has the first move. In
this case, the AND nodes would become OR nodes, and vice versa, and the labels "win" and
“lose" would be reversed. An alternate formulation of game trees, not explicitly
distinguishing between AND and OR nodes, is given in Article C5a, Minimax.

Methods of searching a game tree for a winning strategy are discussed in Section CS.
As with search In other domalns, the source of difficulty in challenging games is the
unimaginably large search space. A complete game tree for checkers, for instance, which is
harder than tic-tac-toe but far simpler than chess or go, has been estimated as having about

10%° nonterminal nodes (Samuel, 1963). If one assumed that these nodes could be ]
generated at the rate of 3 billlon per second, generation of the whole tree would still require

around 102" centuries!

.
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Figure 1. A game tree for Tic-tac-toe.
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C. Search Methods
C1. Blind State-space Search

As discussed In Article B, a problem in the state-space search paradigm is defined by
a triple (S, O, G), where

S Is a set of one or more initial states,
O Is a set of operators on states, and
G is a set of goal states.

The state space Is commonly identified with a directed graph in which each node Is a state

.and each arc represents the application of an operator transforming a state to a successor
state. A solution is a path from a start state to a goal state. Goal states may be defined
either explicitly or as the set of states satisfying a given predicate.

The search for a solution is conducted by making just enough of the state-space graph
explicit to contain a solution path. If the order in which potential solution paths are
considered is arbitrary, using no domain-specific Information to judge where the solution is
likely to lle, the search Is called blind search. Although blind search Is Impracticable for t
nontrivial problems, because of the large proportion of the state space it may explore, it :
provides a useful foundation for the understanding of Aeuristic search techniques, discussed in
Section C3.

Severail blind-search methods are described below; they differ from one another mainly
in the order In which nodes are axamined. In each case, It is assumed that a procedure
exists for finding all the successors of a given node--that is, all the states that can be
reached from the current state by a single operator application. Such a procedure is said to
expand the given node.

The first three algorithms also make two other assumptions:

(a) The state-space graph Is a tree. The implication Is that there Is only one
start state (the root) and that the path from the start node to any other
node Is unique. Modifications to the search methods needed for a general
directed graph are noted In Nilsson (1871) and in Article C3a, Basic
Concepts In Heuristic Search.

(b) Whenever a node is expanded, creating a node for-each of its successors,
the successor nodes contaln pointers back to the parent node. When a goal
node Is finally generated, this feature makes it possible to trace the solution
path.

Breadth-first Search

The breadth-first method expands nodes in ordar of their proximity to the start node,
measured by the number of arcs between them. In other words, It considers every possible
operator sequence of length n before any sequence of langth n+1. Thus, although the
search may be an extremely long one, it is guaranteed eventually to find the shortest
possible solution sequence If any solution exists.
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Breadth-first search Is described by the following algorithm:

(1) Put the start node on a list, called OPEN, of unexpanded nodes. If the
start node is a goal node, the solution has been found.

(2) If OPEN is empty, no solution exists.

(3) Remove the first node, n, from OPEN and place it in a list, called CLOSED,
of expanded nodes.

(4) Expand node n. If it has no successors, go to (2).

(6) Pilace all successors of node n at the end of tha OPEN list.

(6) If any of the successors of node n Is a goal node, a solution has been
found. Otherwise, go to (2).

As an example of breadth-first search, consider a world consisting of a table and three
toy blocks. The Initial state of the world is that blocks 2 and 3 are on the table, and block 1
is on top of block 2 (see Figure 1). We wish to reach a goal state in which the three blocks
are stacked with block 1 on top, block 2 in the middle, and block 3 on the bottom.

Initial state Goal state

231 3

Figure 1. An example problem for breadth-first search.

The only operator is MOVE X to Y, which moves object X onto another object, Y. As
preconditions to applying the operator, it is requirec (a) that X, the object to be moved, be a
block with nothing on top of it, and (b) that if Y is a block, there must be nothing on Y,
Finally, the operator is not to be used to generate the same state more than once. (This last
condition can be checked from the lists of expanded and unexpanded nodes.)

Figure 2 shows the search tree generated by the breadth-first aigorithm. The nodes
are states SO through S10; node S1, for example, corresponds to the successor state of SO
reached by "MOVE block 1 to the table." The nodes are generated and expanded in the
order given by their state numbers, I. e., SO, §1, §2, ..., $10. When the algorithm terminates,
finding S10 to be the goal state, the list of expanded nodes contains SO through S5, and the
OPEN list still contains S6 through S10.

el
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Figure 2. The search tree for Figure 1.

Uniform=-cost Search

The breadth-first algorithm can be generalized slightly to solve the problem of finding
the cheapest path from the start state to a goal state. A nonnegative cost is associated
with every arc joining two nodes; the cost of a solution path is then the sum of the arc costs
along the path. The generalized algorithm is called a uniform-cost search. If all arcs have
equal cost, the algorithm reduces to breadth-first search. The need for assigning costs to
the arcs is illustrated by the traveling-salesman problem, described in Article Bl, where the
different distances between cities correspond to the arc costs and the problem is to
minimize the total distance traveled.

In the uniform-cost algorithm given below, the cost of the arc from node | to node J is
denoted by c(i,}). The cost of a path from the start node to any node | is denoted a(i).

(1) Put the start node, s, on a list called OPEN of unexpanded nodes. If the
start node is a goal node, a solution has been found. Otherwise, set
g(s) = 0.

(2) It OPEN is empty, no solution exists.

(3) Select trom OPEN a node | such that g(i) is minimum. If several nodes
qualify, choose node i to be a goal node if there is one; otherwise, choose
among them arbitrarily. Move node | from OPEN to a list, CLOSED, of
aexpanded nodes.

(4) If node | Is a goal node, the solution has been found.

{6) Expand node I. If it has no successors, go to (2).

(6) For each successor node J of node |, compute 9()) = g(i) + c(i,)) and place
all the successor nodes j in OPEN.

(7) Go to (2).

TR

- .~




Search 23

Depth-tfirst Search

Depth-first search Is characterized by the expansion of the most recently generated,
or deepest, node first. Formally, the deptk of a node in a tree Iis defined as follows:

The depth of the start node is 0.
The depth of any other node is one more than the depth of its predecessor.

As a consequence of expanding the deepest node first, the search follows a single path
through the state space downward from the start node; only If it reaches a state that has no
successors does it consider an alternate path. Alternate paths systematically vary those
previously tried, changing only the last n steps while keeping n as small as possible.

In many problems, of course, the state-space tree may be of infinite depth, or at least
may be deeper than some known upper bound on the length of an acceptable solution
sequence. To prevent consideration of paths that are too long, a maximum Is often placed on
the depth of nodes to be expanded, and any node at that depth Is treated as if it had no
successors. It should be noted that, even If such a depth bound Is used, the solution path
found is not necessarily the shortest one.

The following algorithm describes depth-first search with a depth bound:

(1) Put the start node on a list, OPEN, of unexpanded nodes. If it is a
goal node, a solution has been found.

{(2) If OPEN is empty, no solution exists.

(3) Move the first node, n, on OPEN to a list CLOSED of expanded
nodes.

(4) If the depth of node n is equal to the maximum depth, go to (2).

(6) Expand node n. If it has no successors, go to (2).

(6) Place all successors of node n at the beginning of OPEN.

(7) If any of the successors of node n is a goal node, a solution has
been found. Otherwise go to (2).

As an example, consider the following simple problem: A pawn is required to move
through the matrix in Figure 3 from top to bottom. The pawn may enter the matrix anywhere |
in the top row. From a square containing O, the pawn must move downward if the square |
below contains O; otherwise, it must move horizontally. From a square contalning 1, no *
further moves are possible. The goal is to reach a square containing zero in the bottom row.

A depth bound of 6 Is assumed.

— D D] ] -
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Figure 3. An example problem for depth-first search.
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The search tree generated by the depth-first algorithm Is shown in Figure 4. At ncde
S0, the pawn has not yet entered the grid. At the other nodes, its position is given as a (row
number, column number) pair. The numbering of nodes gives the order in which they are
moved out of the OPEN list of unexpanded nodes. When the algorithm terminates, the OPEN
list contalns S17 (a goal node) and S18; all other nodes are on the expanded list. The
solution found, which is one move longer than the minimum, calls for the pawn to enter at
(1,3), move one square right, and then go straight down to (4,4). Had no depth bound been
used, the tree would have been one level deeper since node S12 has e successor, (4,1).
Since the algorithm treats the state space as a tree, not a general graph, it does not
discover that the distinct nodes S2 and S9 in fact represent the same state. Consequently,
the search downward from S9 duplicates the work already done from S2.

s
(1,1) (1,2) 7.3) (1,4)
sl 9 14
(/22\) (1,2) (1,4)
4 87 slo lls
(2,1) (2,3) (/2< (2,4)
L §11_ s§13 lxe
(3,1 (2,1) (2,3) (3,4)
6 sl2 5[7
(4.1) (3,1) (4,4)

w

Figure 4. The search tree for Figure

Bidirectional Search

Each of the algorithms giver above uses forward reasoning, working from the start node
of a state-space tree towards a goal node and using operators that each map a node | to a
successor node J. In some cases, the search could equally well use bdackward reasoning,
moving from the goal state to the start state. An example of this is the 8-puzzle, in which

(a) the goal state can be fully described in advance, and
(b) It is easy to define inverse operatars--each applicable operator mapping
node j to a predecessor node i.

Since backward search through a tree is trivial, it is assumed that node j can have more than
one predecessor--that Is, several Inverse operators may apply at node j. For example, in
the pawn maze problem, Figure 4, position (1,2) [at nodes S2 and S8] would have both nodes
SO and S8 as predecessors.

Forward and backward reasoning can be combined into a technique called bidirectional




search. The Idea Is to replace a single search graph, which Is likely to grow exponentially, by
two smaller graphs: one starting from the initial state and one starting from the goal. The

Search

search terminates (roughly) when the two graphs Intersect.

A bidirectional version of the uniform-cost algorithm, guaranteed to find the shortest
solution path through a general state-space graph, is due to Pohl (1969, 1971). Empirical
data for randomly generated graphs showed that Pohl's algorithm expanded only about one-

fourth as many nodes as unidirectional search.

An algorithm foi blind bidirectionai search is given in detall below. A related algorithm

for Aeuristic bidirectional search Is discussed in Article C3d.

The following notation is used in the algorithm:

The start node Is s; the goal or terminal node, t.

S-OPEN and S-CLOSED are lists of unexpanded and expanded nodes,
respectively, generated from the start node.

T-OPEN and T-CLOSED are lists of unexpanded and expanded nodes,
respectively, generated from the terminal node.

The cost assoclated with the arc from node n to node x is denoted c{n,x).

For a node x generated from the start node, gs(x) measures the shortest
path found so tar trom s to x.

For a node x generated from the terminal node, gt(x) measures the shortest
path found so far from x to t. -

The algorithm Is as follows:

(1)

(2)

(3)

Put s in S-CLOSED, with gs(s) = 0. Expand node s, creating a node for each
of its successors. For each successor node x, place x on S-OPEN, attach a
pointer back to s, and set gs(x) to c(s,x). Correspondingly, put t In T-
CLOSED, with gt(t) = 0. Expand node t, creating a node for each »>f Its
predecessors. For each predecessor node x, place x on T-OPEN, atiach a
pointer forward to t, and set gt(x) = c(x,t).

Decide whether to go forward or backward. If forward, go to (3); if
backward, to (4). (One way to implement this step is to alternate between
forward and backward moves. Another way, which Pohl found to give better
performance, Is to move backward If T-OPEN contalns fewer nodes than S-
OPEN; otherwise, forward. It is assumed that a solution path does exist, so
the chosen list will be nonempty.)

Select from S-OPEN a node n at whicn gs(n) is minimum. Move n to S-

CLOSED. If nis also In T-CLOSED, go to (6). Otherwise, for each successor

xofn:

(a) If x Is on neither S-OPEN nor S-CLOSED, then add it to S-OPEN.
Attach a pointer back to n and the path cost gs(x) = gs(n) + c(n,x).
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(b) If x was already on S-OPEN, a shorter path to x may have just been
found. Compare the previous path cost, gs(x), with the new cost
gs(n) + c(n,x). If the latter is smaller, set gs(x) to the new path
cost and point x back to n instead of its predecessor on the longer
path.

(c) It x was already on S-CLOSED, do nothing; although a new path to x
has been found, its cost must be at least as great as the cost of the
path already known. (For further consideration of this point, see
Article C3b.)

Return to (2).

(4) Select from T-OPEN a node n at which gt(n) is minimum. Move n to T-CLOSED.

If n is also in S-CLOSED, go to (5). Otherwise, for each predecessor x of n:

(a) If x is on neither T-OPEN nor T-CLOSED, then add It to T-OPEN.
Attach a pointer forward to n and the path cost
at(x) = gt(n) + c(x,n).

(b) If x was already on T-OPEN and a shorter path from x to t has Just
been found, reduce the stored value of gt(x), and point x forward to
n (Instead of to its successor on the longer path).

(c) If x was already on T-CLOSED, do nothing.

Return to (2).

(6) Consider the set of nodes that are in both §-CLOSED and either T-CLOSED or
T-OPEN. Select from this set a node n tor which gs(n) + gt(n) Is minimum; and
exit with the solution path obtained by tracing the path from n back to s and
forward to t.

References

See Nilsson (1971), Pohl (1969), and Pchi (1871).
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C2. Blind AND/OR Graph Search

A problem to be solved using AND/OR-graph search can be defined by specifying a
start node (representing an Initial goal or problem description), a set of terminal nodes
(descriptions of primitive problems), and a set of operators for reducing goals to subgoals.
The rules for constructing an AND/OR graph, together with the use of such graphs for
problem-reduction representation, were discussed in Article BQ. To recapitulate briefly, each
possible application of an operator at a node n (see Figure 1) is represented by a directed
arc from node n to a successor node; these successor nodes are called OR nodes, since only
one of the operator appiications will ever be needed to solve the problem that node n
represents. Each OR node successor of node n represents a set of subproblems. If the set
of subproblems represented by an OR node m has more than one element, then there are
directed arcs from m to nodes representing the Individual elements of the set. These
successors are called AND nodes, because all of the elements of the set must be solved In
order to solve the subproblem set represented by node m. To distinguish AND nodes visually
from OR nodes, the arcs in the graph from m to its AND successors are Joined by a horizontal

g
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Figure 1. AND/OR graph notation.

OR nodes

AND nodes

Formally, a node or problem is said to be solved if one of the following conditions holds:

1. The node is in the set of terminal nodes (primitive problems). (In this
case, the node has no successors.)

2. The node has AND nodes as successors and all these successors are
solved.

3. The node has OR nodes as successors and any one of these
successors is solved.

A solution to the original problem is given by a subgraph of the AND/OR graph sufficient to
show that the start node Is solved. In Figure 2, for example, assuming that nodes 6, 6, 8, 9,
10, and 11 are all terminal, there are three possible solution subgraphs: {1, 2, 4, 8, 8}, {1,
3,6,6,7, 10),and (1,3,6,6,7, 11).
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Figure 2. An AND/OR graph.
A node Is said to be unsolvable if one of the following conditions is true:

1. The node has no successors and is not in the set of terminal nodes.
That is, it is a nonprimitive problem to which no operator can be
applied.

2. The node has AND nodes as successors and one or more of these
successors is unsolvable.

3. The node has OR nodes as successors and all of these succesors are
unsolvable.

Again in Figure 2, node 1 would be unsolvable if all nodes in any of the following sets were
unsolvable: (8, 6}, {8,6), (8,10, 11}, (8,86}, {8,6}, {8, 10, 11}

Two algorithms for the blind search of an AND/OR tree (breadth-tirst and depth-first)
are glven at the end of this article. They have several features in common with blind state-
space search algorithms (Article C1): The operation of expanding & node Is again present,
and again the algorithms differ mainly in the order in which nodes are considered for
expansion. It should be noted that the expansion of a node may differ slightly from the case
of state-space search. In Figure 2, for example, two operators apply at node 1: One
reduces it to a single aquivalent problem (node 2) and the other to a set (node 3) of three
subproblems (nodes 6, 6, and 7). In this case, nodes 2, 3, §, 6, and 7 would all be generated
in expanding node 1, and each new node would be given a pointer to its Immediate
predecessor, but only nodes 2, 5, 6, and 7 would be placed on the list of unexpanded nodes.

In contrast to the state-space search algorithms, most of which use forward reasoning,
the search algorithms below reason backward trom the initial goal. The algorithms described
here make two Important simplifying assumptions: (a) The search space is an AND/OR tree
and not a general graph, and (b) when a problem is transformed to a set of subproblems, the
subproblems may be solved in any order. The first assumption implies that identical
subproblems may arise at different nodes of the search tree and will need to be solved anew
whenaever one of them is encountered. Modifications needed for searching a general AND/OR
graph are discussed In Nilsson (1871). A way of eliminating the second assumption, that aii
subproblems are independent, is discussed in Article C4, Heuristic Search of an AND/OR

Graph.
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Breadth-first Search of an AND/OR Tree

The following algorithm describes the breadth-first search of an AND/OR tree. If a
solution tree exists, this algorithm finds a solution tree of minimum depth, provided that
Intermediate OR nodes are ignored in calculating the depth of the tree. The start node is
assumed not to be a terminal node.

(1) Put the start node on a list, OPEN, of unexpanded nodes.

(2) Remove the first node, n, from OPEN.

(3) Expand node n--generating all its immediate successors and, for each
successor m, If m represents a set of more than one subproblem, generating
successors of m corresponding to the individual subproblems. Attach, to
each newly generated node, a pointer back to its immediate predecessor.
Place all the new nodes that do not yet have descendants at the end of
OPEN.

(4) If no successors were generated in (3), then
ia) Label node n unsolvable.

(b) If the unsolvability of n makes any of its ancestors unsolvable, label
these ancestors unsolvable.

(c) If the start node Is labeled unsolvable, exit with failure.

(d) Remove from OPEN any nodes with an unsolvable ancestor.

(6) Otherwise, if any terminal nodes were generated in (3), then
(a) Label these terminal nodes solved.

(b) If the solution of these terminal nodes makes any of their ancestors
solved, label these ancestors solved.

(c) If the start node is labeled solved, exit with success.

(d) Remove from OPEN any nodes that are labeled solved or that have a
solved ancestor.

(6) Go to step 2.

Depth-first Search of an AND/OR Tree

A bounded depth-first search can be obtained by changing only step 3 of the breadth-
first algorithm. The revised step 3 is as follows:

(3') If the depth of n is less than the depth bound, then: Expand node n, generating
all its immediate successors and, for each successor m, if m represents a
set of more than one subproblem, generating successors of m corresponding
to the Individual subproblems. Attach, to each newly generated node, a
pointer back to its immediate predecessor. Place all the new nodes that do
not yet have descendants at the beginning of OPEN.

The depth-first search will find a solution tree, provided one exists within the depth bound.
As with breadth-first search, the notion of depth is more meaningful if intermediate OR nodes
are not counted. For this purpose one might add the following to the end of step 3':

For each node x added to OPEN, set the depth of x to be the depth
of node n, plus 1.

o
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Given that the start node has depth 0, the depth of any node x will then be the
operator sequence that must be applied to reach node x from the start node.

References

See Nilsson (1971).
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CJ3. Heuristic State-space Search
C3a. Basic Concepts in Heuristic Search

In the blind search of a state-space (Article C1) or an AND/OR graph (Article C2), the
number of nodes expanded before reaching a solution is likely to be prohibitively large.
Because the order of expanding the nodes is purely arbitrary and does not use any
propertias of the problem being solved, one usually runs out of space or time (or both) in any
but the simplest problems. This result is a manifestation of the combinatorial explosion.

Information about the particular problem domain can often be brought to bear to help
reduce the search. In this section, it is assumed that the definitions of initial states,
operators, and goal states all are fixed, thus determining a search space; the question, then,
Is how to search the given space efficiently. The techniques for doing so usually require
additional information about the properties of the specific problem domain beyond that which
Is built into the state and operator definitions. Information of this sort will be calied Aeuristic
information, and a search mathod using it (whether or not the method is foolproof) wiii be
called a Aeuristic search method (Nilsson, 1871).

The Importance of Heuristic Search Theory

Heuristic search methods were employed by nearly ail early problem-solving programs.
Most of these programs, though, were written to solve problems from a single domain, and the
domain-specific information they used was closely intertwined with the techniques for using
it. Thus the heuristic techniques themselves were not easily accessible for study and
adaptation to new problems, and there was some likelihood that substantially similar
techniques would have to be reinvented repeatedly. Consequently, an interest arose in
developing generalized heuristic search algorithms, whose properties could be studied
independently of the particular programs that might use them. (See Newell & Ernst, 1965;
Feigenbaum, 1969; Sandewall, 1971.) This task, in turn, required a way of describing
problems that generalized across many different domains. Such generalized problem
formulations have been discussed in Section B, Problem Representation, in an approach
generally following Nilsson (1971). Given a ger.. alized problem representation, the most
basic heuristic search techniques can be studied as variations on blind search methods for
the same type of problem representation.

The current state of heuristic search theory has been diversely judged. One of the
best known students of the subject has remai¥ed, "The problem of efficlently searching a
graph has essentially been solved and thus no longer occupies Al researchers" (Nilsson,
1974). Other work makes it clear, however, that the theory is far from complete (e.g.,
Gaschnig, 1977; Simon & Kadane, 1875). Its kinship with coitplexity theory now tends to be
emphasized (see Pohl, 1977).

Ways of Using Heuristic Information

The points at which heuristic information can be applled in a search Include

(a) deciding which node to expand next, instead of doing the aexpansions In a-
strictly breadth-first or depth-first order;
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(b) in the course of expanding a node, deciding which successor or
successors to generate--instead of blindly generating all possible
successors at one time; and

(c) deciding that certain nodes should be discarded, or pruned, from the
search tree.

A state-space search algorithm is presented below that uses heuristic information only
at the first of these points, deciding which node to expand next, on the assumption that
nodes are to be expanded fully or not at all. The general idea is always to expand the node
that seems "most promising." A search that implements this idea is called an ordered search or
best-first search. Ordered search has been the subject of considerable theoretical study, and
several variations on the basic algorithm below are reviewed in articles [IC3b through IC3d
(ordered state-space search) and article 11IC4 (ordered AND/OR graph search).

The other two uses of heuristic Information can be discussed more brieliy Decisions of
the second kind--determining which successors to generate--are often decisions of operator
selaction, determining which operator to apply next to a given node. A node to which some
but not all applicable operators have been applied Is said to have been partially developed or
partially expanded. The use of heuristic information to develop nodes partially, reserving the
possibility of fuller expansion at a later point in the search, has been investigated by Michie
(1967) and by Michie and Ross (1970). Other applications of the idea of limiting the
successors of a given node occur in game-playing programs (see CS5c). Another important
variant of the Idea Is means-ends analysis, which, instead of deciding on an applicable
operator, chooses an operator most likely to advance the search whether or not it is
immediately applicable. The problem of making the operator applicable, if necessary, :s
addressed secondarily. (See D2, GPS; and D5, STRIPS.)

The third use of heuristic information, for pruning, amounts to deciding that some nodes
should never be expanded. In some cases, it can be definitely determined that a node is not
part of a solution, and the node may then be safely discarded, or pruned, from the search
tree. In other cases pruning may be desirable even though the nodes pruned cannot be
guaranteed inessential to a solution. One reason, in conjunction with a best-first search, is
simply to save the space that would be required to retain a large number of apparently
unpromising nodes on a list of candidates for possibie future expansion. For examples, see
Doran (1967) and Harris's bandwidth searck (article 1IC3c). Another reason for pruning is as a
restriction on a search that Is otherwise blind. For example, a breadth-first search could be
modified to choose between expansion and pruning for each node it considers. This pruning
to control the search is also very important for problems in which all solutions, rather than
just a single solution, must be found; for finding all solutions Implies an exhaustive
exploration of all unpruned parts of the search space. An example of a search for all
solutions Is the DENDRAL program (see Applications.0Dendral).

Ordered State-space Search

An ordered or best-first search, as mentioned above, is one that always selects the most
promising node as the next node to expand. The choice Is ordinarily assumed to be global,

it St o)




Search 33

that Is, to operate on the set of all nodes generated but not yet expanded. A local choice
would also be possible, however; for example, an ordered depth-first search would be one that
always expands the most promising successar of the node last expanded.

The promise of a node can be defined in various ways. One way, in a state-space
problem, Is to estimate Its distance from a goal node; another is to assume that the solution
path Includes the node being evaluated and estimate the length or difficulty of the entire
path. Along a different dimension, the evaluation may consider only certain predetermined
features of the node in question, or it may determine the relevant features by comparing the
glven node with the goal. In all these cases, the measure by which the promise of a node is
estimated is called an evaluation function.

A basic algorithm for ordered state-space scarch Is glven by Nilsson (1871). The
evaluation function is f*; it is defined so that the more promising a node is, the smaller is the
value of f*. The node selected for expansion Is one at which f* Is minimum. The state space
is assumed to be a general graph.

The algorithm Is as follows:

(1) Put the start node s on a list, called OPEN, of unexpanded nodes. Calculate
* 1*(s) and associate its value with node s.

(2) it OPEN is empty, exit with failure; no solution exists.

(3) Select from OPEN a node i at which f* is minimum. If several nodes qualify,
choose a goal node if there is one, and otherwise choose among them
arbitrarily.

(4) Remove node | from OPEN and placa It on a list, called CLOSED, of expanded
nodes.

(6) If ils a goal node, exit with success; a solution has been found.

(6) Expand node i, creating nodes for all its successors. For every successor
node j of |:

(a) Calculate =(}).

(b) If j is neither in list OPEN nor in CLOSED, then add it to OPEN, with its
f* value. Attach a pointer from j back to its predecessor | (in order
to trace back a solution path once a goal node is found).

(c) It J was already on either OPEN or CLOSED, compare the f* value just
calculated for | with the value previously associated with the node.
If the new value is lower, then (i) substitute it for the old value,
(i) point j back to i Instead of to its previously found predecessor,
and (lil) If node | was on the CLOSED list, move it back to OPEN.

(7) Goto 2.

Step 6¢ is necessary for general graphs, in which a node can have more than one
predecassor. The predeceassor yielding the smaller value of f*(j) Is chosen. For trees, in
which a node has at most one predecessor, step 6¢c can be ignored. Note that even if the
search space is a general graph, the subgraph that Is made explicit is always a tree since
node J never records more than one predecessor at a time.

Breadth-first, uniform-cost, and depth-first search (Article Cl, Blind State-space

Search) are all speclal cases of the ordered search technique. For breadth-first search, we
choose f*(l) to be the depth of node I. For uniform-cost search, f*(l) Is the cost of the path
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from the start node to node I. A depth-first search (without a depth bound) can be obtained
by taking f*(i) to be the negative of the depth of the node.

The purpose of ordered search, of course, is to reduce the number of nodes expanded
as compared to blind-search algorithms. Its effectiveness In doing this depends directly on
the cholce of f*, which should discriminate sharply between promising and unpromising nodes.
If the discrimination is Inaccurate, however, the ordered search may miss an optimal solution
or all solutions. If no exact measure of promise is available, therefore, the choice of f*
Involves a trade-off between time and space on the one hand and the guarantee of an
optimal solution, or any solution, on the other.

Problem Types and the Choice of f*

The measure of a node's promise--and consequently, the appropriateness of a
particular evaluation function--depends on the problem at hand. Several cases can be
distinguished by the type of solution they require. In one, it is assumed that the state space
contains multiple solution paths with different costs; the problem is to find the optimal (i.e.,
minimum cost) solution. This first case is well understood; see Article C3b on the A*
algorithm.

The second situation Is similar to the first but with an added condition: The problem is
hard enough that, if it is treated as an instance of case one, the search will probably exceed
bounds of time and space before finding a solution. The key questions for case two are
(a) how to find good (but not optimal) solutions with reasonable amounts of search effort
and (b) how to bound both the search effort and the extent to which the solution produced
Is less than optimal.

A third kind of problem Is one in which there is no concern for the optimality of the
solution; perhaps only one solution exists, or any solution is as good as any other. The
question here is how to minimize the search effort--instead of, as in case two, trying to
minimize some combination of search effort and solution cost.

An example of case three comes from theorem proving, where one may weil be
satisfled with the most easily found proof, however inelegant. A clear example of case two
Is the traveling-salesman problem, in which finding some circuit through a set of cities is
trivial, and the difficulty, which Is very great, Is entirely In finding & shortest or close-to-
shortest path. Most treatments, however, do not clearly distinguish between the two cases.
A popular test problem, the 8-puzzle, can be treated as being In either class. For further
discussion of cases two and three, see Article C3c, Relaxing the Optimality Requirement.
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C3b. A*--Optimal Search for an Optimal Solution

The A* algorithm, described by Hart, Nilsson, and Raphael (1968), addresses the
problem of finding a minimal cost path joining the start node and a goal node in a state-space
graph. This problem subsumes the problem of finding the path between such nodes
containing the smallest number of arcs. In the latter problem, each arc (representing the
application of an operator) has cost 1; in the minimal cost path problem, the costs associated
with arcs can be aibitrary. Historically, the predecessors of A* include Dijkstra's algorithm
(1969) and Moore's algorithm (19569). A class of algorithms similar to A* is used in
operations research under the name branch-and-bound algorithms (see Hall, 1971; Hillier &
Lieberman, 1974; Lawler & Wood, 1866; and Reingold, Nievergelt, & Deo, 1877).

The algorithm used by A* is an ordered state-space search (Article C3a). Its distinctive
feature is Its detinition of the evaluation function f*. As In the usual ordered search, the node
chosen for expansion Iis always one at which f* is minimum.

Since f* evaluates nodes in light of the need to find a minimal cost solution, it considers
the value of each node n as having two components: the cost of reaching n from the start
node, and the cost of reaching a goal from node n. Accordingly, f* Is defined by

fx(n) = g*(n) + h*(n)

where g* estimates the minimum cost of a path from the start node to node n, and h*
estimates the minimum cost from node n to a goal. The value f*(n) thus estimates the minimal
cost of a solution path passing through node n. The actual costs, which *, g*, and h* only
estimate, are denoted by f, g, and h, respectively. It is assumed that all arc costs are
positive.

The function g%, applied to a node n being considered for expansion, is calculated as
the actual cost from the start node s to n along the cheapest path found so far by the
algorithm. If the state space is a tree, then g* gives a perfect estimate since only one path
from 8 to n exists. In a general state-space graph, g* can err only In the direction of
overestimating the minimal cost; its value is adjusted downward if a shorter path to n is
found. Even In a general graph, there are certain conditions (mentioned below) under which
@*(n) can be shown to be a perfect estimate by the time node n is chosen for expansion.

The function h* is the carrier of keuristic information and can be defined in any way
appropriate to the problem domain. For the interesting properties of the A* algorithm to hold,
however, h* should be nonnegative, and it should never overestimate the cost of reaching a
goal node from the node being evaluated. That Is, for any such node n it should always hold
that h*®(n) is less than or equal to h(n), the actual cost of an optimal path from n to a goal
node. This last condition is called the admissibility condition.

Admissibility and Optimality of A*

It can be shown that if h* satisfies the admissibility condition and if, in addition, all arc
costs are positive and can be bounded from below by a positive number, then A* Is
guarantead to find a solution path of minimal cost If any solution path exists. This property is
called the property of admissibility.

3
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Although the admissibility condition requires h* to be a lower bound on h, it is to be
expected that the more nearly h* approximates h, the better the algorithm will perform. If h*
were Identically equal to h, an optimal solution path would be found without ever expanding a
node off the path (assuming only one optimal solution exists). If h* is identically zero, A*
reduces to the blind uniform-cost algorithm (Article C1). Two otherwise similar algorithms, say
A1 and A2, can be compared with respact to their choices of the h* function, say h1* and
h2*. Algorithm A1 is said to be more informed than A2 It, whenever a node n (other than a goal
node) is evaluated,

h1*(n) > h2*(n) .

On this basis an optimality result for A* can be stated: If A and A* are admissible algorithms
such that A* Is more informed than A, then A* never expands a node that is not also
expanded by A. A proof (correcting the proof given in Nilsson, 1871) appears In Gslperin
(1977).

Optimality and Heuristic Power

The sense In which A* yields an optimal search has to do only with the number of nodes
it expands In the course of finding a minimal-cost solution. But there are other relevant
considerations. First, the difficulty ot computing h* also affects the totel computational
effort. Second, it may be less important to find a solution whose cost is absolutely minimum
than to find a solution of reasonable cost within a search of moderate length. In such a case
one might prefer an h* that evaluates nodes more accurately in most cases but sumetimes
overestimates the distance to a goal, thus yielding an inadmissible algorithm. (See Article
C3c.) The choice of h* and the resulting Aeuristic power of the algorithm depend upon a
compromise among these considerations.

A final question one might consider is the number of node expansions, as opposed to
the number of distinct nodes expanded by A*. The two totals will be the same provided that
whenever a node n Is expanded (moved to the CLOSED list), an optimal path to n has already
been found. This condition Is always satisfied In a state-space tree, where g*(n) = g(n)
necessarily. |t will also be satisfied in a genaeral state-space graph if a condition called the
consistency assumption holds (see Hart, Nilsson, & Raphael, 1968). The general idea of the
assumption is that a form of the triangle inequality holds throughout the search space.
Specifically, the assumption Is that for any nodes m and n, the estimated distance h*(m) from
m to a goal should always be less than or equal to the actual distance from m to n plus the
estimated remaining distance, h*(n), from n to a goal. For an h* not satisfying the
consistency assumption on a general state-space graph, Martelll (1877) has shown that A*®
Is not optimal with respect to the number of expansions and has given an algorithm that runs
more efficlently under these circumstances.
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C3c. Relaxing the Optimality Requirement

The A* algorithm (C3b) is an ordered state-space search using the evaluation function
f* = g* + h*. If the appropriate conditions are met, including most Importantly the admissibility
condition, that the estimate h*(n) is always less than or equal to h(n), then A* is guaranteed
to find an optimal solution path If one exists. Again under suitable conditions, the
performance of A* is optimal in comparison with other similarly defined admissible algorithms.
Still, several questions remain:

(1) One may be more concerned with minimizing search effort than with minimizing
solution cost. Is {* = g* + h* an appropriate evaluation function in this case?

(2) Even it solution cost is important, the combinatorics of the problem may be
such that an admissible A* cannot run to termination. Can speed be gained
at the cost of a bounded decrease in solution quality?

(3) It may be hard to find a good heuristic function h* that satisfies the
admissibility condition; with a poor but admissible heuristic function, A*
deterlorates Into blind search. How is the search affected by an inadmissible
heuristic function?

Minimizing Search Effort

An approach to the first quastion can be stated as follows. The reason for including g
in the evaluation function is to add a breadth-first component to the search; without g*, the
evaluation function would estimate, at any node n, the remaining distance to a goal and would
Ignore the distance already covered in reaching n. |f the object is to minimize search effort
instead of solution cost, one might conclude that g" should be omitted from the evaluation
function. An early heuristic search algorithm that did just this was Doran and Michie's Graph
Traverser (Doran & Michie, 1866; Doran, 19G67); the evaluation function used was of the
form f* = h*, and the object was to minimize total search effort in finding solutions to the 8-
puzzie and other problems. A generalization covering the Graph Traverser algorithm, A®, and
others has been defined by Pohl (1969, 1970a, 1970b) as the Heuristic Path Algorithm
(HPA). This algorithm gives an ordered state-space search with an evaluation function of the
form

f*=(1-w)g*+wh"

where w is a constant in [0, 1] qiving the relative importance to be attached to g and h.
Choosing w = 1 gives the Graph Traverser algorithm; w = 0 gives breadth-first search; and
w = .6 is equivalent to the A* function f* = g* + h*,

Pohl's resuits concerning HPA Indicate that, at least Iin special cases, omitting g* from
the evaluation function is a mistake. One case is that in which h* is the most accurate
heuristic function possible: If h*(n) = h(n) at every node n, the evaluation function f* = h*
still expands no fewer nodes than f* = g* + h*. The other case assumes a simplified state
space, whosa graph is an infinite m-ary trae, and assumas that the error in h*--which may
underestimate or overestimate h--Is bounded by a nonnegative integer e. In this situation it
Is shown that the maximum number of nodes expanded with f* = h* |s greater than the
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maximum number expanded with f* = g* + h*, and that the difference between the maxima Is
expaonential in the error bound e. This analysis by Pohl is one of the earliest applications of
oracle or adversary analysis for discovering worst-case algorithmic efficlency. As such it is
an Important precursor to work on NP-complete problems and thelr attempted solution by
heuristics. (For a general introduction to NP-completeness see Aho, Hopcroft, & Uliman,
1874.)

The two functions f* = h* and f* = g* + h* have not been analyzed with respect to their
average-case, as opposed to worst-case, behavior. Pohl's empirical resuits suggest that
ordered search may typically expand the fewest nodes, provided the h* function is tairly
good, If g* is Included but given less weight than h*--that is, with w greater than .6 but less
than 1. These results were obtained for the 16-puzzle, a task exactly iike the 8-puzzie
aexcept that it uses 16 tiles in a 4 x 4 array.

For problems that differ from the 16-puzzle, in that some states lead to dead ends
rather than only to longer solutions, a somewhat different approach has been taken recently
by Simon and Kadane (1975). Whereas the evaluation functions f* = g* ¢ h* and * = h* are
based on the estimated solution cost at a given node, Simon and Kadane propose that the
function should also take explicit account of the probability that the nade is in fact on a
solution path. With such a function, an expected long search with high probability of
success could readily rate just as favorably as one that is potentially shorter but which has
a higher chance of falling.

Solution Quality and Heuristic Error

The second question, of speed vs. solution quality, has been studied by Pohl (1973,
1977) and Harris (1973, 1974). Harris's work concerns the third question (inadmissible
heuristic functions) as well, as do Pohl's results summarized above. Both Harris and Pohl
consider the traveling-salesman problem, which is NP-complete (Karp, 1972).

Pohi's approach is a further generalization of the HPA evaluation function: Now
1%(n) = g*(n) + w(n)n*(n). That is, the relative weight w to be attached to g* and h* is no
longer constant; the function w(n), which may be greater than or equal to 1, is defined to
vary with the depth of node n. This approach is called dynamic weighting. With a definition of
w that weights h® less heavily ac the search goes deeper, and with the assumption that h* is
a lower bound on h, Pohi shows that HPA will find a solution to the traveling-salesman probiem
whose cost is bounded by the ratio

cost of tour found

cesescacesscsnnssnacanes { 1 ¢ @

cost of optimal solution
where e is a constant in [0,1) which appears in the definition of w.

Dynamic weighting was tested on an instance of the traveling-salesman problem, known
as the Croes problem, which Involves 20 cities and has a known optimal solution cost of 246.
An admissible A*--which produces an optimal solution if It produces any--had stili not
terminated after expanding 500 nodes. With dynamic weighting, however, together with an
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appropriate choice of @ and the same h* function, a solution with cost 260 was found by
expanding only 63 nodes.

Harris's approach, called bandwidth searck, is somewhat different from Pohl's. It
assumes that no good h* function satisfying the admissibility condition Is available. In its
place, he introduces the bandwidtA condition, which requiras that for all non-goal nodes n,

(1) h*(n) s h(n) + e
and
(2) h(n) =d s h*(n) .

It is assumed that h* satisfies the consistency assumption (see Article C3b).

With respect to the first part of the condition, it can be shown that if h* never
overestimates the distance to a goal by more than e, the cost of a solution found by A* will
not exceed the cost of an optimal solution by more than e. With such an h*, the algorithm is
saild to be ¢-admissible; and the goal It finds, e-optimal.

Once the bandwidth search finds some solution, a further application of condition (1)
may show that the cost of the solution found Is in fact closer than e to an optimal solution.
This Is possibie because {a) the cost of the solution found is known, and (b) a lower bound on
the cost of every other solution is the minimum, over all nodes n remaining on the OPEN list, of
f*(n) - e. If the difference between these two quantities is too big, the search can be
continued until it finds a solution that is acceptably close to the optimum.

The second part of the bandwidth condition, condition (2), can be used to save storage
space by dropping nodes from the OPEN list, without any risk of dropping a node that is in
fact on an optimal path to a goal. Let node q be a node that, having a minimum value of f*,
has been selected for expansion. Then any node m may safely be dropped from OPEN if
f*(m) Is hopelessly big compared to f*(q). Specifically, it can be shown that all nodes m can
be dropped if there Is a node q such that

fx(m) - (e + d) > f*(q) .

Harris notes that it may be difficult to find a heuristic function h* that satisfies both
parts of the bandwidth condition. One may instead define two heuristic functions, one to
order the search and one to determine which nodes can be dropped. Such functions, say h1*
and h2*, should then satisfy

(1) h1*(n) < h(n) + e
and
(2") h(n) -d s h2*(n) .

Using two such heuristic functions, Harris tested the bandwidth search on several
instances of the traveling-salesman problem including the 20-city Croes problem mentioned
above. Harris's resuits, Including a comparison with A* using an admissible heuristic function,
are summarized below. The OPEN list was limited to 500 nodes.
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No. of
cities

11
20
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BANOWIDTH SEARCH ADMISSIBLE SEARCH

Qual 1t¥ Nodes Quality Nodes
on

of solut expanded of solution expanded
S-optimal 6

optimal 14 optimal 18
optimal 14 none 5686 open nodes
4-optimal 42 none 588 open nodes

Figure 1. Comparison of bandwidth search and admissible search.
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C3d. Bidirectional Search

Earlier articles in this chapter describe (a) heuristic state-space search methods
using forward reasoning and (b) a blind state-space search combining forward and backward
‘ reasoning Into a bidirectional algorithm. The kinds of problems to which a bidirectional state-
; space method applies are considered in Article C1; In general, it must be possible in these
I problems to search either forward, from the Initial state toward the goal, or backward, from
the goal toward the initial state. A bidirectional search pursues both lines of reasoning in
parallel, growing two search trees and terminating when they meet. The motivation is that, in
many cases, the number of nodes In a search tree grows exponentially with its depth; If a
solution can be found by using two trees of half the depth, the search effort should be
reduced significantly. Blind bidirectional search was in fact found to expand far fewer nodes
| than its unidirectional counterpart. A natural next question is whether heuristic bidirectional
search can give still greater Improvements in efficiency.

I,

This question was Iinvestigated by Pohl (1868, 1971). Whereas his blind bidirectional
algorithm used forward and backward uniform-cost search, his heuristic algorithm used
forward and backward ordered searck. Otherwise, the two algorithms differed mainly in their
1 termination conditions. In both cases the termination condition was complicated by the fact
that the algorithms were designed to find an optimal path between the start and goal nodes;
they could be simplified if any path would do.

As evalution functions, Pohl's heuristic bidirectional algorithm used functions parallel to
’ those of A*. For a node x In the forward search tree:

gs(x) measured the shortest path found so far from the start node, s,
to x;

hs(x) estimated the minimum remaining distance from x to the terminal
node, t; and

fs(x) = gs(x) + hs(x) was the evaluation function.
Similarly, for a node x cenorated in the backward search:

gt(x) measured the shortest path found so far from x to t;

ht(x) estimated the minimum distance from s to x; and

ft(x) = gt(x) + ht(x) was the evaluation function.
Constraints were placed on the heuristic functions hs and ht, corresponding to the
admissibility condition and the consistency assumption of A®, In order to guarantee the
optimality of the solution. '

Pohl's results, In experiments using bidirectional heuristic search on the 15-puzzle,

were disappointing. It was hoped that the search trees rooted at the start and goal nodes
would meet near the middle of the solution path. In blind search, this had happened

" necessarily because both trees were expanded breadth-first. (Recall that uniform-co«:
search is a generalization of the breadth-first algorithm.) In the heuristic case, however, (i
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search In each direction was narrowed. Since each problem had many alternate solutions,
the typical outcome was that both search trees grew to Include nearly complete, but
different, solution paths before Intersecting.

Several ideas have been advanced for forcing the trees to meet earlier while retaining
the benefit of heuristic information (Pohl, 1971; Kowalski, 1972; de Champeaux & Sint,
1976, 1977; Pohl, 1977). One that has been tested is that of Champeaux and Sint, which
redefines the heuristic functions hs and ht as follows:

Let T-OPEN be the list of unexpanded nodes of the backward search
tree. For a node x in the forward search tree, hs(x) estimates the
minimum distarce from x to the goal t by way of some node y in T-
OPEN. That Is, hs(x) is the minimum, over all nodes y on T-OPEN, of
the estimated distance from x to y plus gt(y), the length of the
shortest known path from y to the goal.

The function ht is defined analogously. The authors reported, for the same problems Pohl had
used, that the algorithm generally produced shorter solution paths, with fewer nodes
expanded, and that the search graphs now did meet near the middle of the search space.
Unfortunately, however, hs and ht were so expensive to compute--since for each node x to
be expanded, its distance must be estimated to every node y on the opposite OPEN list--
that the algorithm still ran much more slowly than unidirectional heuristic search.
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C4. Heuristic Search of an AND/OR Graph

This article returns to the problem of searching an AND/OR graph, as opposed to an
ordinary state-space graph. The distinction between the two is the presence of AND nodes,
which add conceptual complications to the search problem. Each node of the AND/OR graph
represents a goal to be achieved. It will be assumed throughout that reasoning is backward,
from an initial goal (the root) toward an equivaient set of subgoals, &ll of which have
immediate solutions. On this assumption, an AND/OR graph constitutes (in the terminology of
this chapter) a problem-reduction representation. This identification gives another way of
stating the distinction between problam-reduction and state-space representations: State-
space operators always take exactly one input and produce exactly one output; a problem-
reduction operator also takes a single input but may produce multiple outputs (see Section
8).

To put the matter further into perspective, one may also conceive of searching an
AND/OR graph in the forward direction--from the primitive problems, whose solutions are
already known, toward the problem one actually wishes to solve. Just such a graph search is
that typically conducted by a resolution theorem-prover, as it brings together two or more
axioms or previous conclusions and applies to them an operator yielding one new deduction
as its resuit. (See Theorem Proving.) Forward reasoning in an AND/OR graph, then, would be
distinguished from a state-space search by the presence of multiple-input, single-output
operators. For further discussion, including an algorithm for bidirectional search of an AND/OR
graph, see Kowalski (1972); see also Martelli and Montanarl (19873).

The search of an AND/OR graph using backward reasoning raises numerous problems.
Previous articles (B2 and C2) have considered

(a) what constitutes a solution subgraph of an AND/OR graph, and
(b) blind search algorithms for finding a solution subgraph.

This article considers three additional problems:
(c) What might one mean by an optimal solution subgraph?

(d) How can Aeuristic information be brought to bear on the search for an
optimal solution?

(e) What limitations are there on AND/OR graphs and the associated
search algorithms as general tools for problem solving?
The Definition of an Optimal Solution
A solution of an AND/OR graph Is a subgraph demonstrating that the start node is

solved. As Iin a state-space search, one may ask for a solution of minimal cost. The cost of
a solution tree can be defined in either of two ways (Nilsson, 1871):

ik




44 Al Handbook

The sum cost of a solution tree is the sum of all arc costs in the tree.

The max cost of a solution tree is the sum of arc costs along the most
expensive path from the root to a terminal node.

For example, if every arc in the solution tree has cost 1, then the sum cost is the number of
arcs in the tree, and the max cost is the depth of the deepest node.

If the entire search space had been explored, then an optimal solution tree could be
constructed and its cost measured as follows. Let c¢(n,m) be the cost of the arc from node n
to a successor node m. Define a function h(n) by:

If nIs a terminal node (a primitive problem), then h(n) = 0.

If n has OR successors, then h(n) is the minimum, over all its
successors m, of c(n,m) + h(m).

If n has AND successors and sum costs are used, then h(n) is the
summation, over all successors m, of c(n,m) + h(m).

If n has AND successors and max costs are used, then h(n) is the
maximum, over all successors m, of c(n,m) + h(m).

If n is a nonterminal node with no successors, then h(n) is infinite.
According to this definition, h(n) is finite if and only if the problem represented by node n is
solvable. For each solvable node n, h(n) gives the cost of an optimal solution tree for the

problem represented by node n. If s is the start node, then h(s) is the cost of an optimal
solution to the Initial problem.

Consider, for example, the AND/OR tree of Figure 1, with arc costs as indicated. Each
node without successors is marked t or u according to whether it Is terminal or unsolvable.

S
30N
A B
1 / 6! \2 1 / \3
t t t3 C D
! /_\1 ! / \i
ul t4
1 /._\1
t5 t6
Figure 1. An AND/OR tree.
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It sum costs are used, the values of h are as shown in Figure 2, and the optimal soiution Is the
subgraph comprising nodes S, B, D, E, t6, and t6. The abbreviation inf denotes infinity.

S
h=9
1 2
A
ha9 hs?
1/6 \2 1/ \3
1 t2 t3 C
ha@ hz@ h=d h=inf h=4

hzinf h=8 hsinf h=?2

1 /~—\1
t5 t6
h=8 h=8

Figure 2. Sum costs.

If max costs are used, then the values of h are as shown in Figure 3, and the optimal solution
Is the subgraph comprising nodes S, A, t1, t2, and t3.

S
h=7
/ \
A B
h=6 h=6
tl t2 t3 C
h=0 h=8 h=8 h=inf h=3

1 /—\ 1
t t6
h=8 h=6

Figure 3. Max costs.
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Ordered Search Algorithms for an AND/OR Graph

in an ordered state-space search, oha may use an umlu.mnnfunmon f* that, applied to
noda n, raturns the estimated minimum cost of a solution path passing through node n. 'he
next node expanded Is always one at which f* is minimum=--that Is, one extends tha most
promising potential solution path. Tho successors of nodo n ara new nodas, but one could
Just as woll think of them as naw potential solution paths, cach differing from a parent
(potantiail sotution path) by the Inclusion of ono more stop.

In the extaenslon of haurlstic search to AND/OR graphs, thara is no longer a one-to-oneo
correspondonce betweon the cholce of a node to expand and the cholce of a potential
solution to be extended. Considar, for axample, the search graph of Figure 4.

I\Li\l!
I\,

Figurae 4. An AND/OR graph containing two
potontial solution traas.

Since C and D are OR nodes, an actual solution of noda S will contain only one of them. To
expand node A Is thus to extend two potential solution trees,

D

A P2y

A /‘ and A -
; "

Convarsaly, a decision to extend the potential solution tree on the left can be carriad out by
oxpanding either node A or node C. One must ba clear, tharatora, about what kind of object
tho expansion process Is to apply to. This decision will affect the definition of the
avaluation function.

Nilsson's algorithm. An approach taken by Nilsson (18969, 1071) solects Individual
nodes to expand by a two-step process: First, Idantify the most promising potential solution
tree; than choose a node within that traa for expansion. To accomplish thae first step, an
evaluation function h* is dafinad at evary node n of the tree that has not been shown to be
unsolvabla. This function is an estimate of h(n); that s, It estimates the cost of an optimal
solution to the problam at node n. If nIs known to ba a terminal node, then by definition h*(n)
= h(n) = 0. Otharwise, If n has not yet beon expandad, then the estimate must be based on
whatever heuristic Information Is available from the probiem domain. For example, In the
soarch troe of Figure 4, h* would provide hauristic estimates of the cost of solving nodes A,
C, and D. The following rule then permits h* to be computed for each node whose sSuccessors
have alreedy been geneorated (and to be recomputed as tho search tree Is expanded):

i n has OR successors m, than h*n) is tha minimum, over these
successors, of c(n,m) + h*(m).
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If n has AND successors m and sum costs are used, then h*(n) Is the
summation, over these successors, of c(n,m) + h*(m).

If n has AND successors m and max costs are used, then h*(n) Is the
maximum, over these successors, of ¢c(n,m) + h*(m).

Finally, the most promising potential solution tree, T, Is defined in terms of h*:

The start node s is In T.

If the search tree (the part of the search space generated so far) contains a
node n and AND successors of n, then all these successors are In T.

It the search tree contalns a node n and OR successors m of n, then one
successor m is In T such that ¢(n,m) + h*(m) is minimal.

The estimated cost of T Is h*(s). If all the other potential solution trees for the same search

tree were constructed, it would be found that T is one for which h*(s) is minimal.

An ordered-search algorithm for an AND/OR tree can now be stated as follows:

(1)
(2)

(3)
(4)

(6)

(e)

(7)

Put the start node, s, on a list, OPEN, of unexpanded nodes.
From the search tree constructed so far (initially, Just s), compute the most
promising potential solution tree T.
Select a node n that is on OPEN and in T. Remove node n from OPEN and
place It on a list called CLOSED.
If nis a terminal node, then
(a) Label node n solved.
(b) If the solution of n makes any of its ancestors solved, label these
ancestors solved.
(c) If the start node is solved, exit with T as the solution tree.
(d) Remove from OPEN any nodes with a solved ancestor.
Otherwise, If node n has no successors (l.e., If no operator can be applied),
then
(a) Label node n unsolvable.
(b) If the unsolvabllity of n makes any of its ancestors unsolvable, label
all such ancestors unsolvable as waell.
(c) If the start node Is labeled unsolvable, exit with fallure.
(d) Remove from OPEN any nodes with an unsolvable ancestor.
Otherwise, expand node n, generating ali its inmediate successors and, for
each successor m representing a set of more than one subproblem,
generating successors of m corresponding to the Individual subproblems.
Attach, to each newly generated node, a pointer back to Its immediate
predecessor, and compute h* for each newly generated node. Place all the
new nodes that do not yet have descendants on OPEN. Finally, recompute
h*(n) and h* at each ancestor of n.
Go to (2).

47 |

The ordered-search algorithm can be shown to be admissidle--that Is, it will find a
minimum=-cost solution tree if any solution exists--provided that: (a) h*(n) is less than or
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aqual to h(n) for each open node n, and (b) all arc costs are greater than some smali positive
number d. The efficlency of the algorithm, however, depends both on the accuracy of h* and
on the implementation of step 3, in which, having found the most promising potential solution
tree to expand, one must decide to expand a specific node within that tree. If the partial
tree T Is Iin fact part of an optimum solution, the choice is immaterial. If It is not, however,
then the best node to expand would be the one that will earliest reveal the error.

Chang and Slagle's algorithm. A different approach has been taken by Chang and
Stagie (197 1). Here the objects expanded are potential solution graphs. A ¢ip node in such a
graph is any node that does not yet have successors. To expand the potential solution
graph, one expands all its nonterminal tip nodes at once and then forms all the new potential
solution graphs that result. Each graph is represented on the OPEN list by the conjunction of
Its tip nodes, representing a set of subproblems to which the start node can be reduced.

For example, suppose that expansion of the initial graph, consisting of only the start
node S, shows that S can be reduced to problems A and B or to problem C. The OPEN list
then becomes (A&B, C). Assume that A&B is selected for expansion, that A can be reduced
to D or E, and that B can be reduced to F or G. There are four new potential solution trees,
and the OPEN list Is now (D&F, D&G, E&F, E&G, C). The search succeeds when it selects for
expansion a potentlal solution graoh represented by a conjunction of nodes all of which are
terminal.

The Chang and Slagle approach assimilates AND/OR graph search to the problem of
state-space search. Each distinct conjunction of problems to be solved corresponds to a
distinct state of a state-space graph. The evaluation function used, f*, Is also parallel to
the function used in A*: It is defined by f* = g* + h* , where g* measures the cheapest way
found so far to reduce the start node to a given conjunction of subproblems and h* estimates
the minimum remaining cost of a graph sufficient to solve all those subproblems.

The treatment of AND/OR graph search as an instance of state-space search has
saveral consequences. One is that the search of a general AND/OR graph, as opposed to an
AND/OR tree, now ralses no special problems. Another is that the algorithm can be shown
(Chang & Slagle, 1971), under appropriate conditions, to be not only admissible but also
optimal with respect to the number of potential solution graphs expanded. It does not,
however, appear to be optimal (In some reasonable sense of that term) in comparison with
algorithms that expand only one node at a time (see Kowalski, 1972).

interdependent Subproblems

The discussion so far has assumed that whenever the start node is reduced to a
conjunction of subproblems, all subproblems can be solved independently, so that the solution
to one has no effect on the solution to any other. This assumption Is frequently unjustified,
and much of the chapter on Planning explores ways of dealing with interacting subproblems.
Two kinds of examples, given by Levi and Sirovich (1876, 1876) with explicit reference to
the AND/OR graph formalism, are: (a) problems requiring consistent binding of variables and
(b) problems involving the expenditure of scarce resources.

An illustration of the former is the well-known problem of showing that there exists a
fallible Greek, given that the entire search space is as follows:
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Find @ fallible Greek

Find somethin falli(c Find something Greek
Find something human Socrates is Greek
Turing Socrates
is human is human

Figure 6. An AND/OR graph requiring consistent binding
of the varlable "something."

An algorithm like Nilsson's fails here for two reasons. First, it has no mechanism for
discovering that "Turing is human" and "Socrates is Greek" fail to constitute a solution.
Second, even if such a mechanism were introduced, the algorithm has no means for undoing
the solution to a subproblem once it has been solved. If "Turing Is human" Is the first
problem found to be primitive, then "Find something human" and “Find something fallible" are
marked solved; "Socrates Is human" Iis removed from the OPEN list as no longer in need of
conslderation; and "Find something Greek," using the previous value of "something," then
becomes unsolvable.

An example of the second type of problem is the following: Show that John can seduce
the actress, glven that seducing the actress can be reduced to getting a car and getting a
yacht; and that John has $56000, a car costs $56000, and a yacht costs $56000. Here either
of the algorithms given above would wrongly conclude that John can seduce the actress. A
varlant of the scarce resource problem arises In robot planning tasks (such as those
performed by STRIPS, Article D5), where application of an operator representing a robot
action solving one subproblem may make inapplicable the operator needed to solve another
subproblem.

To handle problems of these kinds, Levi and Sirovich define a generalized AND/OR
graph, which differs most importantly from an ordinary AND/OR graph In that reduction
operators are permitted to take two or more nodes as Input. For example, let R be a
resource that can be used only once. Then If, in the standard formulation, the original
problem Is to accomplish P1 and P2, the problem is reformulated as P1 & P2 & R. Suppose
the following reduction operators are avallable (where -> means "can be reduced to" and 1
denotes a trivial problem):

1) S$->P1 &P2&R
2) P1&R=>T

3) P1->P3

4) P2&R->P3
6) P33T

6) R-T

Then there is only one solution, which is achleved using operators 1, 3, 4, and b.
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In the ordered search of a generalized AND/OR graph, the objects placed on the OPEN
list are potential solution graphs, not Iindividual nodes. Expansion of a potential solution
graph (PSG) consists of applying all possible operators to obtain a new set of PSGs, each
differing from its parent by virtue of one additional operator application. If the same
subproblem occurs more than once within a PSG, each occurrence Is represented by a
separate node. If the same PSG is generated more than once, later occurrences are simply
discarded. Since distinct PSGs are retained, alternate solutions to the same subproblem are
available.

As in the usual ordered search, the object chosen for expansion next is always one
where the evaluation function is minimum. The evaluation function is h*; for each PSG, It is
computed similarly to the h* of Nilsson's algorithm. The value of each potential solution graph
Is then the evaluation of the start node, h*(s), as computed for that graph. Both admissibility
and optimality--the latter with respect to the number of PSGs expanded--can be shown.

Ve
3

References

See Chang & Slagle (1971), Kowalski (1972), Levi & Sirovich (1976), Levi & Sirovich
(1976), Martelii & Montanari (1973), Nilsson (1969), and Nilsson (1971).
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CS8. Game Tree Search

CS8a. Minimax Procedure

The Minimax Formalism

The minimax procedure is a technique for searching game trees (Article B3). As a first
example, Figure 1 glves a simple game tree to which the procedure may be applied. Each B
node represents a position in the game. Nonterminal nodes are labeled with the name of the
player, A or B, who Is to move from that position. It is A's turn, and the problem is to find his
best move from position 1. Exactly three moves remain in the game. Terminal nodes are
marked with their value to player A by the werds "win," “lose," or "draw." k

e g i
AP AR

Y

AT

4 6 7 9 4
A A A A A A £
u/ \1‘1 1/ \13 14/ s 16/ \17 xa/ \19 ze/ \zx k.

win win  lose win lose lose draw draw win draw lose draw H

k.

Figure 1. A game tree from the standpoint of
player A, who is to move next.

According to the minimax technique, player A should move to whichever one of positions
2 or 3 has the greater value to him. Given the values of the terminal positions, the value of
a nonterminal position Is computed, by backing up from the terminals, as follows:

The value to player A of a node with OR successors (a node from
which A chooses the next move) is the maximum value of any of its
successors.

(1)
The value to A of a node with AND successors (a node from which B
chooses the next move) is the minimum value of any of its successors.

In the example, node 2 evaluates to a loss for A (since B can then force a loss by moving to
node 6), and node 3 evaluates to a draw (since the best B can then do is move to node 7 or
9). It will be noted that the prediction of the opponent's behavior assumes he Is also using :
minimax: In evaluating a node with AND successors, A must assume that B will make his best 1
possible move. The technique ignores the possibility that B might overlook his chance for a |
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sure win If A goes to node 2. Similarly, it supplies no basis on which B might choose to move
to node 9 in preference to node 7.

Because of the way in which nodes are evaluated, player A (whose viewpaint the tree
reprasents) is often called MAX, and player B, MIN. The names PLUS and MINUS are also
sometimes used. If the tree of Figure 1 were to be evaluated from MIN's standpoint instead
of MAX's, it would appear as in Figure 2. The AND and OR nodes are reversed, and the value
of each node to MIN is the opposite of its value to MAX.

3
8
1
A
n draw lose

w dra
\ /—\\3 14/—15 16—-” 18 \ B/ \2
s i win draw

18 19
n draw draw lose draw

11 1
lose lose W

Figure 2. The game tree of Figure 1 from B's standpoint.

The Negmax Formalism

Knuth and Moore (1976) have given a game-tree representation that unifies Figures 1
and 2 and conveniently permits a single procedure to return optimal moves for both players A
and B. In this representation, the value given each node is its value to the player whose
turn it would be to move at that node. If nis a terminal node, its value is an integer denoted
f(n). (The value of n to the other player is -f(n).) The value of every node Is then returned
by a function F defined as follows:

F(n) = f(n), if n has no successors;
F(n) = max {-F(n1), ... ,~F(nk)}, if n has successors n1, ... ,nk.

The best move for either player is then to a node with maximum value; that is, the player
whose turn it Is at node n should move from node n to a node ni with = F(ni) = F(n). This
formulation, which is equivalent to minimax, is called negmax. The tree it produces for the
game of Figures 1 and 2 is shown in Figure 3. The numerical value of a win is assumed to be
+1; of a loss, -1; and of a draw, 0.




T S

2 3
B 8
/ s / T \
4 1 \ 6 7 l 9
A A A A A A
AN LS e e A 4
10 11 12 13 14 15 16 17 18 19 20 21
Fz=] Fz~] Fz¢] Fz=] F=¢] F=¢l F=@ F=0 F==1 F=0 F=+1 F=0

Figure 3. The game tree of Figure 1 in NEGMAX notation.

Searching a Partial Game Tree

In the above descriptions of the minimax and negmax algorithms, it was assumed that a
complete game tree had already been generated. For most games, however, the tree of
possibilities Is far too large to be generated fully and searched backward from the terminal
nodes for an optimal move. An alternative is to generate a reasonable portion of the tree,
starting from the current position; make a move on the basis of this partial knowledge; let the
opponent reply; and then repeat the process beginning from the new position. A "reasonable
portion of the tree" might be taken to mean all legal moves within a fixed limit of depth, time,
or storage, or it might be refined in various ways. For discussion of the refinements, see
article CSc.

Once the partial tree exists, minimaxing requires a means for estimating the value of its
tip nodes, that Is, the nodes of the partial tree without successors. A function assigning such
a value is called a static evaluation function; it serves a purpose comparable to that of the
heuristic function h* used In Nilsson's ordered search of an AND/OR tree (Article C4). If the
partial game tree contains any nodes that are terminal for the entire tree, the static
evaluation function conventionally returns positive Infinity for a win, negative infinity for a
loss, and zero for a draw. At other tip nodes, the function has a finite value which, in the
minimax formulation, Is positive for positions favorable to MAX and negative at positions
favorable to MIN. The minimax procedure then assigns backed-up values to the ancestors of
the tip nodes in accordance with the rules given in (1) above. It is assumed that the
backed-up evaluations give a more accurate estimate of the true value of MAX's possible
moves than would be obtained by applying the static evaluation function directly to those
moves and not looking ahead to their consequences.

References

See Knuth & Moore (19876), Nilsson (1971), Slagle (1871), and Winston (1877).
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C6b. Aipha-beta Pruning

The minimax procedure described in Article C5a decides on a best move from node n, in
a full or partial game tree, by evaluating every node in the tree that descends from node n.
Frequently, this exhaustive evaluation is a waste of time. Two examples are shown in
Figures 1 and 2. Each node is marked with the name of the player who is to move from that
position.

1 1
MAX MAX
2 3 2
F(%NIS /MIN\ /MIN\ MIN
|
4 5 4 5
F(gl)\xlﬂ oy F(:u)\xzo /MAX\
1 £
6 7
MIN MIN
F(6)=25
Figure 1. An alpha cutoff. Figure 2. A beta cutoff.

In Figure 1, nodes 2 and 4 have been evaluated either by the static evaluation function
or by backing up from descendants omitted from the figure. If MAX moves to node 2, he
achleves a position whose estimated value is 156. if he moves to node 3, MIN can hold him to
10. Therefore, the value of node 3 is at most 10, so MAX should declde to move to node 2.
The important point is that this decision can be made without evaluating node &6 or any of its
possible descendants.

In Figure 2, node 4 has an estimated value to MAX of 20. When node 6 is evaluated at
26, It becomes clear that MIN should avoid moving to node 6. Node 2 can therefore be
assigned a value of 20 without any need to evaluate node 7 or any of its descendants.

The alpha-beta technique tor evaluating nodes of a game tree eliminates these
unnecessary evaluations. If, as is usual, the generation of nodes is interleaved with their
evaluation, then nodes such as the descendants of node & in Figure 1 and of node 7 in
Figure 2 need never even be generated. The technique uses two parameters, alpha and
beta. In Figure 1, the parameter alpha carries the lower bound of 16 on MAX's achievement
from node 1; the elimination of node & Is an alpha cutoff. In Figure 2, the parameter beta is
set to 20 at node 4, representing an upper bound on the value to MAX of node 2; the
elimination of node 7 is a deta cutoff. The procedure guarantees that the roct node of the
tree will have the same final value as if exhaustive minimaxing were employed.

A concise statement of the alpha-beta procedure has been given by Knuth and Moore
(1976). It uses thelr negmax representation in which both players are treated as wishing to
maximize (see Article C5a). Figure 3 shows how Figures 1 and 2 are transformed in the
negmax represantation.
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1 1
MAX MAX
2 \ 3 2 / \ 3
F‘z!)tsu-“ MIN MIN MIN
4 / \ 5 4 / \ 5

MAX F(?:I)\Xn /NAX\
3
6 7

MIN

MAX
F(4)=18

MIN
F(6)= =25
Figure 3. The NEGMAX representation of Figures 1 and 2.

To evaluate node 1 of either tree, the procedure is called with the parameters POSITION =
node 1, ALPHA = negative infinity, and BETA = positive infinity. The static evaluation function
is called f. The procedure, here called VALUE, is as follows:

INTEGER PROCEDURE value(POSITION p, INTEGER alpha, INTEGER beta)
BEGIN
INTEGER m, |, t, d
determine the successor positions py, Py, 4 Py

. of position p;
IF d = O THEN value := f(p) ELSE
BEGIN
r m := alpha;

FOR i := 1 STEP 1 UNTIL d DO
BEGIN t := -value (p, -beta, -m);
IFt>mTHEN m := t; =
IF m > beta or m = beta THEN GO TO done; k
END; .

done: value := m;

END;

END;

For an Intuitively developed LISP version of the alpha-beta procedure, see Winston (1977).

An excellent review of the historical development of the technique appears in Knuth and
Moore (1976).

Ordering of Successors

b e

The degree to which the alpha-beta procedure represents an improvement in efficlency
% over straight minimaxing varies with the order In which successor nodes are evaluated. For
example, no cutoff would occur in Figure 1 if node 3 were considered before node 2. H

In general, it Is desirable that the best successor of each node be the first one |
evaluated--that ls, that the first move MAX considers be his best move, and that the first .




B

66 Al Handbbdok

reply considered for MIN be the move that Is best for MIN and worst for MAX. Several
schemes for ordering the successors of a node have been described to try to achieve this
state of affairs. One possibility, an example of fixed ordering, is to apply the static
evaluation function to the successors, taking the results of this preliminary evaluation as an
approximation of their expected backed-up values. A method of this sort will result in depth-
first generation and evaluation of the partial game tree, subject to the depth bound or other
criteria for terminating generation. For some other possibilities, see Article CSc.

Efficiency in Uniform Game Trees

Since the alpha-beta procedure is more complicated than minimaxing, although it yields
the same result, one may inquire how great an increase it produces in search efficiency.
Most theoretical results on this question deal with uniform game trees: A tree is said to be
uniform if every tip node has depth d and every nontip node has exactly b successors. Here
b is called the branching factor or degree of the tree.

The results reviewed below come from Knuth and Moore (1976) and, for the best case,
Slagle and Dixon (1368). For other related work, see Fuller et al. (1873), Newborn (1877),
and Baudet (1978).

The best case. A uniform game tree of depth d and degree b contains exactly b° tip
nodes, all of which must be examined by minimax. In the worst case, alpha-beta also must
examine every tip node. In the best case, alpha-beta examines only about twice the square
root of the number of tip nodes. More precisely, assuming the value of the root is not
infinite, the number of tip nodes examined in the best case is

pleesn/2l 4 plas2) _ 4

(where square brackets represent the greatest integer function); and the nodes examined in
the tree as a whole are precisely the critical noles, definad as follows:

Type 1 critical nodes are the root node and all first successors of type 1 nodes.

Type 2 critical nodes are all further successors (except the first) of type 1
nodes and all successors of type 3 nodes.

Type 3 critical nodes are the first successors of type 2 nodes.

Figure 4 lllustrates the distribution of critical nodas In a uniform tree of degree 3 and depth
3.
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Figure 4. Oistribution of critical nodes.

Knuth and Moore have shown that the best case occurs for a uniform tree if the best move is
considered first at each critical node of types 1 and 2. Attempts to order the successors of
type 3 pesitions contribute nothing to efficlency, since these successors are type 2 nodes,
which must all be -:x zmined anyway.

Random uniform game trees. Knuth and Moore also show that the alpha-beta
technique Is optimal in the sense that no algorithm can evaluate any game tree by examining
fewer nodes than alpha-beta does with an appropriate ordering of successors. Realistically,
of course, one cannot expect to achieve the optimal successor ordering, since this would
imply full knowledge of the game tree before it is generated. Assuming, therefore, that the
tip nodes of the tree have distinct random values, Knuth and Moore show that the expected
number of tip nodes examined, in evaluation of a uniform tree with branching factor b and
depth d, has an asymptotic upper bound of

(b/(log b))?
as d goes to Infinity.

Totally dependent uniform game trees. One othar type of tree considered by Knuth
and Moore, perhaps more realistic than the one in which tip nodes have random values,
corresponds to games in which each move is critical: If a poor move is ever chosen, there is
no way to recoup. The model is a uniform game tree that is totally dependent: For any two
successors of node p, these successors can be labeled q and r so that every tip node
descended from node q has greater value than any tip node descended from node r. In this
type of tree, if the degree is at least 3, the expected number of tip positions examined is
bounded by a constant (depending on the degree) multiplied by the number of tip nodes
examined by the alpha-beta method in the best case.
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C8c¢. Heuristics In Game Tree Search

In the search of a game tree (Article B3), as in other kinds of search, there are various
points at which heuristic information may be applied. The parallel is not exact, however. In
one-person problem solving, the main uses for heuristic information are to decide which node
to expand next, which operator to apply next, and, in some algorithms, which nodes to prune
from the search tree. (See Article C3a.) In game-playing programs, these questions also
exist, but with a shift in emphasis. In addition, some new questions arise: When should the
search be terminated? How should a move be chosen on the basis of the search that has
been made?

The simplest answers to these questions were described in Article CSa: Expand every
node completely, in any convenient order and with no pruning, until every tip node represents
a termination of the game. Then, working back from the end of the game, use the minimax
procedure to find a winning line of play (if one exists), and follow this line of play throughout
the game. Articie CSb, Alpha-beta Pruning, described an improvement on this approach that
yields the same final result with greater efficiency.

A program using only these basic techniques would play a theoretically perfect game;
its task would be like searching an AND/OR tree for a solution to a one-person probliem. For a
simple game like tic-tac-toe (see Article B3), such a program wnuld no doubt be feasible.
For complex games, however, it has been recognized from the beginning that searching from
the start of the game to its end would be impossible. In chess, for example, with around 30
legal moves from each position and about 40 moves for each player in a typical game, there

are some (302)%° or 10'2° qifferent plays of the game (Shannon, 1950).

Because of the magnitude of the search space in chess, checkers, and other nontrivial
games, there is a major difference between programs that play such games and programs
that use the methods of this chapter to solve nonadversary problems. The latter either find
a solution or fail, having run out of time or space; much of the research assumes that some
solution can be found and deals with how to guarantee that it is optimal or nearly optimal
(see Section C3, Heuristic State-space Search). The question for a chess program, in
contrast, Is how to play a good game even though it has not found a solution to the problem
of winning. Repeatedly the program must become committed to its next move long before the
end of the game comes into view. Whether the move chosen is in fact part of a winning
strategy Is unknown untii later in the game.

For a nontrivial game playing program, then, the issues listed at the beginning of this
article are all aspects of a broader question: Can the basic search techniques, designed for
seeking a guaranteed win, be successfully adapted to the problem of simply choosing the
next move? In addition, one might well ask whether there are alternatives to search as the
basis for move selection. Most of the work exploring these questions has been done in the
specific domain of chess. In general, the discussion below is limited to chess programs and
Samuel's checkers program (1863, 1967).

Alternatives to Search

i An example of choosing & move on a basis other than search is the use of "book
moves" in the opening of a chess game (see Frey, 1977, pp. 77-79). More generally, there
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Is an emphasls In the recent computer chess literature on treating the problem of move
choice as a problem of recognizing patterns on the board and associating appropriate playing
methods with each pattern (e.g., Charness, 1977, p. 62; Bratko et al., 1978; Wilkins, 1979).

It is not expected, however, that search can be eliminated entirely from chess
programs; even human players do some searching. Rather, the choice-of-move problem is
seen as involving a tradeoff between the amount of specialized chess knowledge a program
has and the amount of search it needs to do. (See, e.g., Berliner 1977c; Michie, 1977.) And
there are limits on the amount of knowledge a program can be given: The combinatorics of
chess preclude storing an exhaustive representation of the game; and even the knowledge
possessed by chess masters, which greatly restricts search in human play, also remains very
far from complete formalization.

The last section of this article reviews several programs that attempt to use human-
like knowledge to eliminate most searching. The sections preceding it concern techniques
used In programs In which search rather than knowledge is predominant.

Search-based Programs

The most successful game-playing programs so far have made search rather than
knowledge their main Ingredient. These include, among the earlier programs, Samuel's
checkers program (1963, 1967), which came close to expert play; and Greenblatt's chess
program (1967), which was the first to compete in tournaments and which earned a rating of
1400-1460, making it a Class C player. (Current classes of the United States Chess
Federation are E through A, Expert, Master, and Senior Master. See Hearst, 1877, p. 171.)
Notable later programs include the Soviet program KAISSA (Adelson-Velskiy et al., 13976),
which won the first world computer chess championship in 1874, and Slate and Atkin's CHESS
4.6 (1977), whose current standing is mentioned below. (For general reviews of computer
chess competition, see Berliner, 1978a; Mittman, 1977; and Newborn, 1976.)

All the programs referred to above follow the basic search paradigm formulated by
Shannon in 1950. In its simplest form, which was called a Type A program, Shannon's
paradigm made Just two changes to the procedure mentioned above that calls for searching
exhaustiveiy all the way to the end of the game. First, the game tree was to be generated
only to a fixed depth. Second, since the nodes at the depth limit would normally be
nonterminal, a means of estimating the promise of these nodes was required. The estimate
was to be given by a static evaluation function, whose values could then be backed up by
minimaxing to determine the next move. After this move was made and the opponent had
replied, the search process would be repeated beginning from the new position.

Shannon noted that a simple Type A program would play chess both badly and slowly.
He suggested two directions for improvement in a Type A program, with which the program
would become Type B. The general objactives were, first, to let the exploration of a line of
play continue to a reasonable stopping point instead of Invariably cutting it off at an arbitrary
depth; and, second, to provide some selectivity about the lines of play considered, so that
more time could be spent investigating strong moves and less on pointless ones.

Even a Type B program, Shannon concluded, seemed to rely too much on brute-force
calculation rather than on knowledgeable analysis of the situation to choose a move.
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Nevertheless, his proposals established a framework that most competitive game-playing
programs have adopted. The framework raises a large number of Interrelated Issues, wiich
are discussed in the following sections.

Static Evaluation

A static evaluation function, by definition, is one that estimaies the value of a board
position without looking at any of that position's successors. An ideal function would be one
that reports whether the position leads to a win, a loss, or a draw (provided neither side
makes a mistake). Even more Informatively, tha function might report the number of moves
required to win, with an arbitrarily large value if no win is possible. But functions that can
distinguish between winning and losing positions are known only for simple games; an
example of such a function for the game Nim is given in Shannon (1950).

Where perfect evaluation functions are unavailable, the actual static evaluator must
return an estimate. Unlike the cva/uation function used in an ordinary state-space or AND/OR
graph search (C3a, Cd), the static evaluation function of a game-playing program does not
normally attempt directly to estimate the distance to a win from the position evaluated. (For
a proposal that the function should do just this, see Harrls, 1974.) Instead, the function is
usually a linear polynomial whose terms represent various features of the position, high
values being given for features favorable to the program and low ones for those favoring the
opponent. In chass, the most Important feature Is material, the relative value of each side's
pleces on the board. Other typlical features, familiar to chess players, include king safety,
mobility, center control, and pawn structure.

The most extended treatment of evaluation functions In the literature Is provided by
\ Samuel (1963, 1967). For checkers, ho concluded (1967, p. 611) that the optimal number of
features to be used in the evaluation function was between twenty and thirty. Samuel's main
interest was in machine learning; one approach he took was to provide his checkers program
with a large set of features for possible use Iin the avaluation function and to let the program
determine, as It gained playing experience, both which of these features should be included
and what their relative weights should be. In a later version of the program, the emphasis
was shifted to taking the Interactions among features into account in evaluating positions.
With this change, the evaluation function became nonlinear, and considerable improvement
was reported in Its quality as measured by the correlation with moves chosen In master play
(Samuel, 1967; see also Griffith, 1974). For further discussion of Samuel's work, see

Learning.
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Reasonably accurate static evaluation, then, requires a rather complex function. But
there Is an Important limit on the complexity that Is feasible, especially for a program that
plays In tournaments, under time limitations. As the total number of tip nodes in the search
tree Increases, the time avallable for evaluating any single tip node goes down. Thus
Gillogly's chess program TECH (1872), which was Intended as an experiment in how much
could be accomplished on advanced machines by simple brute force search, and which |
generates up (o 600,000 tip nodes even with alpha-beta pruning, uses material as the only 4
factor In Its static evaluations. '
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Backed-up Evaluation

The Shannon paradigm assumaes that the step between static evaluation and the choice
of a move Is simply minimaxing: The program moves to any position with the best backed-up
minimax value. This step is indead very commonly used. But it is worth noting that, since the
static evaluation function may be wrong, the minimax procedure no longer serves its original
purpose of defining and identitying a move that is theoretically correct. Instead, minimaxing
has itself become a heuristic for the choice of move. Several programs have therefore
expearimented with varying or supplementing the minimax procedure. Slagle and Dixon
(1970), for example, in experiments with the game of kalah, compute the backed-up value of
a node by taking into account not only the value of its best successor but also whether the
node has several good successors or just one. Gillogly's TECH (1872), having computed
minimax values on the basis of an extremely simple static evaluation, breaks ties between
moves with equal minimax values by an analysis of features not considered by the evaluation
function. Newell, Shaw, and Simon (1963a) set a value In advance that the search is
expected to achieve; the first move found that meets this standard is made, and only if no
move is good enough Is the best minimax value used to determine the move (see also Newell

& Simon, 1872).

Depth of Search

if perfact evaluation functions were available, a game-playing program could proceed
at each turn by generating all legal moves, evaluating each of the resulting positions, and
choosing the move leading to the best value. The reason for looking farther ahead is to
compensate for errors in the static evaluation. The assumption is that, since static
evaluation has a predictive aspect, there will be less room for mistaken prediction if a deep
tree Is generated before the avaluation function is applied.

The controlling fact about search depth Is the combinatorial explosion. If the average
number of tegal moves from a position, the drancking factor, Is b, the game tree will have about

b® nodes at depth d. According to Shannon's estimate for chess, a complete tree carried to
depth 6--3 moves for each player--would aiready have about one billion tip nodes. At the
same time, Shannon noted, a world champion may occaslonally look ahead, along & single line
of play, to a depth as great as 16 or 20. More recently Hans Berliner, a former World
Correspondence Chess Champion, has sald he finds It necessary at {east once in a game to
look ahead to a depth of 14 or more (1874, p. 1-8). The question, then, is how to get the
needed depth, In the right places, without succumbing to the combinatorial explosion. An
alternative question would ba how to avoid the need for so deep a search. The remainder of
this article concerns attempts to solve or at least alleviate these problems. First, however,
experiance with the use of depth bounds as such will be reviewed.

Fixed-depth search with extensions for quiescence. The simplest lookahead
procedure, which was called for by Shannon's Type A strategy, is to set a fixed depth, or
ply, to which the game tree is to be generated and to apply the static evaluation function
only to nodes at this depth. Thus a 4-ply search would statically evaluate the positions
reached after exactly two turns for each player. There are serious drawbacks in this
procedure, as Shannon observed, and it was used only in very early programs (Kister et al.,
1967; Bernstein et al., 1868). For example, a chess evaluation function based mainly on
materlal cannot return a realistic value if at the depth limit the players happen to be halfway
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through an exchange of pieces. The concept of a quiescent or dead position was introduced to
get around such difficulties (Shannon, 1950; see also Turing, 1963): Search would be
extended beyond the normal limit, from nonquiescent positions only, until all tip nodes were
relatively stable or perhaps until some absolute depth-bound had been reached.

This introduction of & quiescence search was one of the two features that changed a
program, In Shannon's terminology, from Type A to Type B. On Shannon's suggested
definition, a position was considered nonquiescent if "any piece Is attacked by a piece of
lower value, or by more pleces than defences or if any check exists on a square controlled
by opponent" (1950, p. 271). Many programs have adopted a similar definition, with the
result that the only moves examined beyond the normal limit are checks and immediate
captures (e.g., Gillogly, 1972; Adelson-Velskiy et al., 1975; Slate & Atkin, 1977). If such a
quiescence search Is combined with considering all legal moves down to the normal depth
limit, the program is still called Type A in current terminology (e.g., Berliner, 1978a).

The horizon effect. Searching to an arbitrarily limited depth, even with extensions for
checks and captures, creates a phenomenon that Berliner (1973, 1974) has called the
horizon effect. Berliner's general observation is that, whenever search is terminated (short of
the end of the game) and a static evaluation function is applied, the program's '"reality
exists in terms of the output of the static evaluation function, and anything that is not
detectable at evaluation time does not exist as far as the program is concerned" (1974, p.
I-1).

Two kinds of errors ensue. The first is called the negative horizon effect: The program
manipulates the timing of moves to force certain positions to appear at the search horizon,
and It thus may conclude that it has avoided some undesirable effect when In fact the effect
has only been delayed to a point beyond the horizon. A second kind of error, the positive
horizon effect, Involves reaching for a desirable consequence: Either the program wrongly
concludes that the consequence is achievable, or it fails to realize that the same
consequence could also be achieved later in the game in a more effective form. This last
problem, Berliner believes, can be met only by finding ways to represent and use more chess
knowledge than traditional programs have included (1874, p. I-7).

For most of the errors coming from the horizon effect, however, the diagnosis is that
the typical definitions of quiescence are highly oversimplified. Ideally a position would be
considered quiescent only when the static evaluation function, applied to that position, could
return a realistic value, that is, when the value of every term included in the function had
become stable. A quiescence search that pursues only captures and checking moves,
however, considers only chahges in the material term. The material term itself, moreover,
usually reflects only the presence of the pieces on the board; its value will be unchanged by
a move that guarantees a capture later instead of making a capture now.

To get around the problems arising from inadequate quiescence analysis, a first
approach called secondary search was developed by Greenblatt (1867): Whenever & move
appeared, on the basis of the regular search (including quiescence), to be the best move
considered so far, the predicted line of play was extended by searching another two ply
(plus qulescence) to test the evaluation. Berliner points out, however: "The horizon effect
cannot be dealt with adequately by merely shifting the horizon" (1874, p. I-4). One direction
In current work, therefore, looks toward a much fuller quiescence analysis as a substitute for
arbitrary depth bounds. (See Harris, 1975, 1977; Slate & Atkin, 1977, pp. 116-117; and,
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for an early example, Newell & Simon, 1872, pp. 678-698.) Berliner meanwhile is developing
a general algorithm, not limited to chess, for causing tree search to terminate with a best
move, even though no depth limit has been set and no full path to a win has been found
(Berliner, 1977c, 1978b).

Iterative deepening. Despite its drawbacks, most current programs still use a fixed-
depth search, extended for checks and capture sequences. A variation used by CHESS 4.5
(Slate & Atkin, 1977) is called iterative decpening: A complete search, investigating all legal
moves (subject to alpha-beta pruning), is done to depth 2, returning a move. The search is
then redone to depth 3, again to depth 4, and so on until & preset time limit is exceeded. For
efficlency, information from earlier iterations is saved for use In later ones. Running on the
very fast COC Cyber 176, the program searches to an average depth of 6 plies in
tournament play, with search trees averaging 600,000 nodes (Newborn, 1978). It is the
first program to have achieved an Expert rating in human play. In the fall of 1978 a new
version, CHESS 4.7, was reportedly rated 2160 (Levy, 1978); Master ratings begin at 2200.
It remains an open question how much stronger the program can become.

Ordering of Search

The Shannon paradigm did not specify any particular order In which the nodes of the
search tree were to be explored or in which moves from a given node were to be considered.
For efficient use of space, the order of node expansion is usually depth-first; a depth-first
algorithm needs to store explicitly only those nodes on the path it is currently investigating
and not the parts of the tree where search has been completed. .

With the Invention of alpha-beta pruning, the order of considering moves within a
depth-first search became highly significant. |f the order Is Ideal, then in a tree with

branching factor b the number of nodes that must be examined at depth d is reduced from b®

to only about 2b%2 (See Article C5b.) For example, Shannon's estimated 10° chess
positions at depth 6 would be reduced to around §0,000. It also follows that, for a constant
number of tip nodes examined, correct ordering of the moves for alpha-beta cutoffs would
allow the search depth to be roughly doubled. [n general, the desired ordering is one in
which the first move considered at a position is the best move for the player whose turn it is.
Usually, of course, there is no method guaranteed to achieve this ordering, for If there were,
it would enable moves to be chosen with no search at all. Several heuristics have been
used, however, to try to approximate optimal ordering.

Perhaps the simplest idea for move ordering Is the fixed-ordering method mentioned in
Article CSb: For each move from a node, generate a new node for the resulting position,
apply the static evaluation function to the position, and order the nodes according to this
preliminary estimate. For greater efficiency, several programs have used a separate
tunction for move ordering, which applies to the move itself instead of to the position that
results from it (Greenblatt, 1967; Berliner, 1974, p. l1-16; Adelson-Velskiy, 1876). In either
case the game tree is explored by an ordered depth-first search (Article C3a).

A fuller basis for choosing which move to consider first Is provided by Slate and Atkin's
iterative deepening technique, which makes repeated depth-first searches. Each Iteration
constructs a line of play, down to its depth limit, consisting of apparently best moves. The
following Iteration, going one piy deeper, thus has avallable an estimated best move from
each position along this line of play. (See Slate & Atkin, 1977, pp. 102-103.)
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A further approach to move ordering makes explicit the idea of a refutation move: For
each move that is not a best move, it should be shown as quickly as possible that the move
is bad. To do this, strong replies should be considered first, which may refute the move
proposed. Typical implementations consider all capturing moves first, and then consider killer
moves. The idea here, called the killer heuristic, is that if a move has served as a refutation in
some previously examined position that is similar to the current one, It is likely to be a
refutation In the current position too. For more on the killer heuristic and other refutation
techniques, see Slate and Atkin (1977), Adelson-Velskly (1976), Gillogly (1972), and Frey
(1977).

Once the moves have been ordered at a given node and the search has moved
downward, following the move that seemed best, it may turn out that this move is actually a
very bad one for reasons that were not apparent earlier. Since accurate move ordering is
important to maximizing alpha-beta cutoffs, it might be worthwhile at this point to go back,
reorder the moves, and start again with a different estimated best move. Such a procedure,
called dynamic ordering, was investigated by Slagle and Dixon (1969), using the game of
kalah. They reported a modest improvement over fixed ordering for trees of depth at icast
6. On the other hand, Berliner's chess program experienced a serious Increase i1 rinning
time when dynamic ordering was used (1974, p. IV-14). A procedure somewhat : o
dynamic ordering was also used by Samuel (1967).

If dynamic ordering Is carried to its limit, so that reordering is considered every (¢ a
node Is expanded instead of only under more limited conditions, the search procedure in
effect changes from depth-first to best-first. That is, the move considered next (or the
position to which it leads) Iis on some estimate the most promising in the entire search tree
generated so far, subject to whatever depth limit exists. Nilsson (1968, 1971) implements
this Idea by adapting his algorithm for best-first AND/OR tree search (C4) to game trees.
Harris (19876, 1977) suggests another adaptation, in which the motivation of maximizing
alpha-beta pruning no longer plays a role and Instead the objective is to expand the most
active positions first, using a thorough quiescence analysis rather than a depth limit as the
criterion for search termination.

Width of Search

The techniques discussed so far are consistent with the idea that all legal moves from
a position must be examined, at least sufficlently to establish that they can be safely pruned
by alpha-beta. This consideration of all legal moves is referred to as full-width searching.
Some of the earliest programs used a full-width search for simplicity; strong current programs
use It because of the great difficulty in determining, without search, which moves can be
safely ignored (Turing, 1953; Kister et al, 19567; Gillogly, 1972; Adelson-Velskiy et al.,
1976; Slate & Atkin, 1877). The problem, of course, is that an excellent move may look very
poor at first sight.

Yet the average number of legal moves from a chess position Is at least 30, and even
with a maximum of alpha-beta pruning the tree grows exponentially. Making the search more
selective was Shannon's second requirement to change a program from Type A to Type B.
Many people have been convinced that such selectivity is essential to a strong chess
program, both in order to increase search depth and to permit more sophisticated evaluation
of the nodes remaining in the search tree. Berliner, for example, has advocated reducing the
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total search tree size to at most 5000 nodes, with a branching factor of less than 1.9
(1974, p. 1-16). Although some reconsideration of these ideas has been prompted by the
success of CHESS 4.7 using full-width search, it appears that that program Is still weak at
long endgame sequences (see Berliner, 1978a; Michie & Bratko, 19878). Moreover, there are
other games for which it Is even clearer that full-width search is not the answer. For the
game of go, for exampie, the average branching factor has been estimated at perhaps 200
(Thorp & Walden, 1270), and for backgammon, where legal moves depend on the throw of the
dice as well as the board position, the factor Is over 800 (Berliner, 1877a).

Various devices nave begii tried in the effort to increase the selectivity of the search
without missing good moves. Some are conceptually simple, introducing little or no new
chess-specific knowledge into tha program. Others attempt to formulate and use chess
concepts as sophisticated as thos2 a chess master might employ. The remainder of this
seaction reviews mainly the earlier searcii-controlling devices. The following section mentions
work, some of which moves outside the Shannon paradigm, in which the effort to capture
expert chess knowledge becomes primary.

Forward pruning. One way of limiting the number of moves to be considered introduces
no new complications: Simply generate all legal moves at a position, use a fixed-ordering
scheme to sort them according to their apparent goodness, or plausibility, and then discard all
but the best few moves. Such a technique, called plausible-move generation or forward
pruning, was used by Kotok (1862) and Greenblatt (1967); see also Samuel (1967). A
further feature of these programs, sometimes called tapered forward pruning, was that the
number of moves retained was a function of the depth at which they were generated. For
example, Greenblatt's program in tournament play retained 16 moves from a position at either
of the top two levels of the tree, 9 moves at the next two levels, and 7 moves thereafter.
These figures could be increased in special cases--for example, to be sure that moves of
more than a single plece were considered.

Another form of forward pruning, distinct from plausible move generation, operates not
at the time when moves are originally generated but later, when one of these moves (or the
position to which it leads) Is being selected for further exploration. At this point a preliminary
estimate of the value of the move or position may already have been made by the move-
ordering schema. If this estimate is outside the limits alpha and beta, the currently known
bounds on the outcome of the entire search (see CSb), the node is pruned without further
investigation. It is possible, of course, that the actual backed-up value of the node would
have turned out to be between alpha and beta. In that case a good move may have been
missed. (See Samuel, 1967; Berliner, 19874, p. IV-13.)

Still another basis for forward pruning has been explored by Adelson-Velskiy et al.
(1976). They observe that KAISSA's search trees include many lines of play that a human
would consider absurd, not necessarily because the moves are bad a priori, but because the
human player has already considered and rejected the same moves in an analogous position.
The proposal, then, is to remember moves that have been found to be absurd (on some
definition) and to reject them in other positions too unless there has been an appropriate
change of circumstances. In effect, this method of analogies Involves trying to establish
conditions under which a refutation is guaranteed to be effective. Then the line of play
constituting the refutation would not need to be explored separately every time it Is
applicable. (See Frey, 1977, p. 68.)




66 Al Handbook

Goal-directed move generation. Returning to the Initial generation of moves, there is
another kind of plausible move generator that comes closer to mimicking the way that humans
might decide which moves are worth considering. Instead of generating all legal moves and
discarding some, this approach does not generate moves at all uniess they seem reievant to
some goal. The earliest step in this direction was Bernstein's program (1969), which
contained a sequence of board featui:s to be tested for and a procedure for generating
moves In response to each feature that was present. The first few tests in the sequence
were (1) Is the king in check? (2) can material be gained, lost, or exchanged? and (3) is
castling possible? A maximum of 7 plausible moves was returned. Questions later In the
sequence were not asked if earlier questions caused the maximum to be reached. Searching
to a fixed depth of 4 ply, the program generated trees with about 2400 tip nodes.

More explicitly goal-directed move generation was included in Newell, Shaw, and
Simon's 1968 chess program (Newell, Shaw, & Simon, 1963a; Newell & Simon, 1972).
Indeed, the entire program was organized in terms of goals, although only three--material,
center control, and plece development--were actually Implemented. At each turn, the
program began by making a preliminary analysis to decide which of the goals were relevant
to the situation; these were entered, in order of importance, on a current goal-list. It was
intended, in a more fully developed program, that as the game progressed the goals of center
control and development would drop out, since they are important mainly in the opening, and
would be replaced by others more appropriate to later phases of the game.

Each active goal in the Newell, Shaw, and Simon program was responsible for
generating relevant moves at the first level of the tree. In addition, each goal contained its
own separate generator for moves at deeper levels, its own criteria for whether a position
was dead, and its own static evaluation function. The search proceeded, in a highly selective
manner, until the tip nodes were dead with respect to all active goals. Static evaluations
with respect to the various goals were combined lexicographically, so that the highest
priority goal was dominant and the others served only as tiebreakers. Newell and Simon ]
report that the program's average search tree contained only 13 nodes--with no apparent
loss in playing power compared to other programs up to that time (1972, p. 694). !

Knowledge-based Programs

The Bernstein and Newell, Shaw, and Simon programs were early efforts to introduce
significant chess knowledge, organized in human terms, to limit brute-force search. The
actual knowledge was very sketchy; apparently neither program ever won a game (see
Newell & Simon, 1972, pp. 677, 690).

An attempt at fuller use of chess knowledge was made in Berliner's program, CAPS-I|
(1974, 1977b). Much of the work Iinvolved developing a representation suitable for use in
selectively generating moves, making preliminary evaluations of the moves so proposed, and
describing the actual consequences discovered when a move was tried. The moves
generated depend on the current goal state, which may be King in Check, Aggressive,
Preventive Defense, Nominal Defense, Dynamic Defense, or Strategy. In contrast to the
Newell, Shaw, and Simon program, the goal states are mutually exclusive, and state
transitions occur dynamically as the tree is searched, in accordance with a complex 4
flowchart. An important feature of the program, the Causality Facility, relates to both move |
generation and move ordering, as well as to pruning in some cases. The problem it attacks is
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a general one in tree searching: When a path has been explored and found unsatisfactory,
most programs have no way to diagnose what went wrong and use this information in deciding
where to search next.

The basic search algorithm in CAPS-ll is depth-first, with minimaxing and alpha-beta
pruning. The Causality Facility operates as a refinement on this search. A first new feature is
that, whenever a value is backed up in the search tree as a tentative minimax value, certain
information is accumulated about the consequences of the move or moves that produced the
value. The data structure in which the information Is stored is called a Refutation Description.
As the basis for making use of the Refutation Description, the program uses a variable
representing the expected value of the position at the root of the search tree; this value,
which may be updated during the search, lies somewhere between the bounds given by alpha
and beta. Now, the tentative value newly backed up to a node can be compared with the ,
expected value. If the comparison Is unsatisfactory, the Causality Facility uses the s |
Refutation Description to decide whether the last move tried from the node could have been 4
responsible. it generates a list of alternative moves from the node, with the aim of avoiding
the unsatisfactory result. These moves are compared with the list of moves from the node |
that had been generated earlier but which have not yet been tried. The comparison is used [
to reorder moves already on the untried list and, depending on the state the program is in, to =
add new moves to the list and to prune old ones. e

Whereas Berliner's program plays the full game of chess, there are several other
recent programs which, in their emphasis on representing chess knowledge, limit their task to
solving problems that involve only selected aspects of the game. Two of these are the
programs of Pitrat (1977) and Wilkins (1979). In each, the task is to find a line of play that
wins material, beginning from a given middie-game position. The approach in both programs is
to work backward from the goal of winning material to a structure of subgoals that
constitutes a plan. (See Planning.) Wilkins's program, PARADISE, for example, has as a main
theme the expression of chess concepts, like making a square safe for a piece or safely
capturing a plece, in terms that can be used as subgoals and eventually reduced to specific
moves. Initially, a plan is based not on search but on an extensive analysis of the originally
given position; It may contain conditional branches depending on general categories of moves
with which the opponent might reply. The general plan is then used to guide search,
generating a very small tree. Moves considered for the program to make are only those
relevant to the current subgoal; for the simulated opponent, all reasonable defensive moves
are consldered. |f search shows that the plan has failed, a causality facility similar to
Berliner's Is used to analyze the difficulty and suggest a new plan.
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Both the Pitrat and the Wilkins programs have succeeded in solving problems where the
winning line of play goes to a depth of around 20 ply. Pitrat reports, for a set of 11
problems, that search tree sizes ranged from about 200 to 22,000 nodes; computation time
varied from under 3 seconds to about 7.5 minutes. WIlkins's PARADISE generates smaller
trees but uses more time; for 89 problems solved, the number of nodes in the search tree ran
from a minimum of 3 to a maximum of 216, and time to find the solution varied from 19
saconds to 33 minutes. Wilkins also reports a good success rate compared to previous

5 programs tested on the same set of problems, including Berliner's program, Gillogly's TECH,
i and an earller version of CHESS 4.5. The programs other than PARADISE, however, were
tested with a time limit of only 6 minutes per problem.
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A final example of the use of chess knowledge to solve a class of problems is the work
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of Donald Michie and his colleagues on chess endgames (e.g., Bratko, Kopec, & Michie, 1978;
Michie & Bratko, 1978). Here each combination of pieces with which the endgame may be
played is treated as posing a separate problem. One problem, denoted KNKR, is to defend
with king and knight against king and rook, starting from any of some 3 million legal positions
involving only those pieces. The objective is to provide the program with enough knowledge
about this specific class of chess problems to achieve theoretically correct play, even in
situations where chess masters sometimes err, and to accomplish this using only a moderate
amount of search.

The program's knowledge is encoded in a data structure called an Advice Table, within
which patterns occurring on the board may be described. Each pattern has an associated
list of goals, or "pieces of advice," in the order in which they should be attempted. The
object then becomes to find a solution--in the sense of a solution subtree of an AND/OR tree
(C2)--to the problem of satisfying one of the goals. Unlike a standard AND/OR tree search,
however, the "advice" includes not only a definition of when tip nodes should be considered
terminal, but also constraints that every intermediate node in the solution tree must satisfy.

The amount of search required to find a solution using an Advice Table depends on how
much knowledge the table contains. If the only goal provided were avoidance of mate, a
! search to the impossible depth of 85 ply would be needed to find the best defense from
I some positions. With the additional advice not to lose the knight and to keep king and knight
together, search to about 10 ply is sufficient. With the further refinements included in the
actual Advice Table, the program is reported to play the KNKR endgame at master level using

only a 4-ply search.
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D. Example Search Programs
D1. Logic Theorist

The Logic Theorist (LT) was a program written by Allen Newell, J. C. Shaw, and H. A.
Simon in 1956, as a joint project of the RAND Corporation and the Carneglie Institute of
Technology. It was one of the earliest programs to investigate the use of heuristics in
problem solving. The term heuristics, as used by Newell, Shaw and Simon, referred to "the
complex processes . . . that are effective in problem-solving.* They stated,

We are not interested in methods that guarantee solutions, but which
require vast amounts of computation. Rather, we wish to understand
how a mathematician, for example, is able to prove a theorem even
though he does not know when he starts how, or if, he Is going to
succeed. (Newell, Shaw, & Simon, 1863b, p. 109)

Heuristics weare thus ldentifiad with processes "that may solve a given problem, but offer no
guarantee of doing so" (p. 114; see also Overview).

In descriptions of the Logic Theorist program, the heuristics discussed by Newell, Shaw,
and Simon relate principally to limiting the search space by means of an apt problem
formulation. Within the defined space, the search was blind except for some minor
selectivity In the selection of operators (see C3a).

The problem domain of the Logic Theorist is the proof of theorems in the propositional
calculus (see Representationlogic). The basis is Whitehead and Russell's Principia
Mathematica, from which both axioms and theorems to be proved were taken. There are
five axioms, as follows:

(pvp)op

pa>(qvp)
(pvqg)a(qvp)
[pvigvnl=2[avipvn)
(P2q)>[(rvp)a(rvaql)]

b s

Some typical theorems that LT was given to prove include:

2.01. (p: ~p):’ ~p
2-‘6- ~(p v q) 2 ~p
231. [pv(avn]la[(pvavr]

The numbering of the theorems is taken from Whitehead and Russell. in some cases, the
data given the program included not only the axioms but also previously proved theorems
from that work. When all earlier theorems were included with the axioms, the program
succeeded in proving 38 of the first 62 theorems In Chapter 2 of Principia Mathematica, in
the sequence given there.

The program operates by reasoning backward, from the theorem to be established, to the
axioms and glven theorems. Three operators were provided for reducing the theorem to be
proved, let us say X, to an axlom or theorem. These operators were:
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Detachment: To show X, find an axiom or theorem of the form A > X, and
transform the problem to the problem of showing A.

Forward chaining: To show X where X has the form A 2 C, find an axiom or
theorem of the form A > B, and transform the problem to the problem of
showing B> C.

Backward chaining: To show X where X has the form A> C, find an axiom
or theorem of the form B > C, and transform the problem to the problem of
showing A > B.

Since the axioms and given theorems contain variables, consideration must be given to
the means for deciding whether a problem has in fact been reduced to something known.
The question Is whether a current problem expression X is an instance of an axiom or known
theorem. The test, called the Substitution Test, uses two rules of Inference distinct from
those reflected in the operators:

Substitution: A variable in a theorem may be replaced, in all its
occurrences throughout the theorem, by an expression. For example,
substituting the expression "p v q" for the varlable "p" transforms

p2(qvp)
into

(pva)a[qvipvaq)l

Replacement: The connective ">" is interchangeable with its definition.
That is, if p and q are expressions, then

pP2q
can be replaced by

~pVvq
and vice versa.

As well as being used to determine whether a proof is complete, the substitution test is also
essential for determining what applications of the three operators are possible with respect
to a given problem expression.

The general algorithm used by the Logic Theorist is a blind, breadth-first state-space
search using backward reasoning. The initial state corresponds to the original theorem to be
proved. To test whether an expression has been proved, the program applies the
substitution test, pairing the problem expression with each axiom and assumed theorem, in
turn. If substitution fails, the expression Is placed on a list of open problems; problems are
selected from this list to become the current problem in first-in, first-out order.

To a problem selected from the list, each of the three operators Is applied, in fixed
order and In all possible ways, to generate new open problems. The search terminates with
success as soon as a single problem is generated that passes the substitution test, since
this means that a path has been completed between an axiom and the original problem. The
search falls If it exceeds time or space limits, or if it runs out of open problems.

An example of a case in which the latter occurs is the attempted proof of the theorem

oo e otk
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To succeed with this proof, LT would have needed more powerful operators; this particular
problem required the abllity, which LT lacked, to transform a problem to a set of subproblems,
or conjunctive subgoals, which a// had to be solved in order to solve the original problem.

Thera are some qualifications to the preceding general description of LT. One concerns
the statement that each operator Is applied to the current problem in every possible way,
that is, that the current problem expression is matched against every axiom and assumed
theorem to determine the applicability of any of the operators to that expression-axiom pair.
In fact, the program attempted a match for the purpose of discovering an appropriate
substitution only if the pair had passed a test indicating equality of certain gross features,
such as the number of distinct variables in each. This test for similarity occasionally
rejected a pair for which a substitution in fact would have been possible, thus excluding a
proof the program would otherwise have found. Overall, the utility of this similarity test was
considered rather marginal.

Some other additions, apparently made in a later version of the program (see Newell &
Simon, 1972, pp. 125-128), included (a) ordering the open problems, taking up those
involving simpler expressions first instead of proceeding in a strictly breadth-first order, and
(b) rejecting some subproblems entirely as too complicated or apparently unprovable. In the
implementation of these features, the latter appeared to be the more effective measure in
reducing search effort. There was also experimentation, as mentioned previously, with the
number of theorems that could be assumed as given in addition to the basic axioms. The
conclusion on this point was that "a problem solver may be encumbered by too much
information, just as he may be handicapped by too littie" (Newell & Simon, 1972, p. 127).

References

See Newaell, Shaw, & Simon (1963b), Newell & Simon (1972), and Whitehead & Russell
(1926).
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D2. General Problem Solver

psychological theory.

B2) with partial development of nodes (Article C3a).

Goals and Methods

goals are provided:
1. Transform object A into object B.

3. Apply operator Q to object A.

2. Reduce a difference between object A and object B by modifying object A.

The General Probiem Solver (GPS) was developed by Allen Newell, J. C. Shaw, and H. A.
Simon beginning in 1957. The research had a dual intention: It was aimed both at getting
machines to solve problems requiring intelligence and at developing a theory of how human
beings solve such problems. GPS was the successor of the authors' eurlier Logic Theorist
program (Article D1), whose methods had only a slight resemblance to those used by humans
working on similar problems. Development of GPS continued through at least ten years and
numerous versions of the program. The final version, described in detail in Ernst and Newell
(1969), was concerned with extending the generality of the program, not with the

The name "General Problem Solver" came from the fact that GPS was the first problem-
solving program to separate its general problem-solving methods from knowledge specific to
the type of task at hand. That is, the problem-solving part of the system gave no information
about the kind of task being worked on; task-dependent knowledge was collected in data
structures forming a task environment. Among the data structures were objects and operators for
transforming objects. A task was normally given to GPS as an initial object and a desired
object, into which the Initial object was to be transformed. GPS objects and operators were
similar to the states and operators of a state-space problem representation (Article B1).

The general problem-solving technique introduced by GPS, however, does not fit neatly
Into elther the state-space or the problem-reduction representation formalisms.
from a standard state-space search (e.g., Article 1IC1) in the way it decides what path to . ,
next. This technique, called means-¢nds analysis, is a major theoretical contribution of the
program. It assumes that the differences between a current object and a desired object can
be defined and classified into types and that the operators can be classified according to
the kinds of difference they might reduce. At each stage, GPS selects a single relevant
operator to try to apply to the current object. The search for a successtul operator
sequence proceeds depth first as long as the chosen operators are applicable and the path
shows promise. Backup Is possible if the current path becomes unpromising--for example, if
eliminating one difference has introduced a new one that is harder to get rid of.

It differs

An Important feature of means-ends analysis is the fact that the operator selected as
relevant to reducing a difference may in fact be inapplicable to the current object. Rather
than rejecting the operator for this reason, GPS attempts to change the current object into
an object appropriate as input to the chosen operator. The result of this strategy is a
recursive, goal-directed program that records the search history in an AND/OR graph (Article

The most important data structure used by GPS is the goal. The goal Is an encoding of
the current situation (an object or list of objects), the desired situation, and a history of the
attempts so far to change the current situation into the desired one. Three main types of
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Assoclated with the goal types are methods, or procedures, for achieving them. These
methods, shown in a simplified version in Figure 1, can be understood as problem-reduction
operators that give rise either to AND nodes, in the cese of transform or apply, or to OR
nodes in the case of a reduce goal. The initial task presented to GPS Is represented as a
transform goal, in which A is the Initial object and B the desirad object.

TRANSFORM
A TO B

REDUCE DIFFERENCE \YRANSFORH
BETWEEN A AND B, A' TO B
GIVING OUTPUT A'

REDUCE DIFFERENCE

BETWEEN A AND B APPLY OPERATOR Q TO A
SELECT A RELEVANT OPERATOR Q REDUCE DIFFERENCE APPLY Q TO A",
AND APPLY IT TO A BETWEEN A AND THE  GIVING OUTPUT A'
GIVING OUTPUT A' PRECONDITIONS FOR

Q. GIVING OUTPUT A"

Figure 1. The three GPS methods for problem reduction.

The recursion stops If the goal Is primitive--that is, if for a transform goal there is no
difference between A and B; and if for an apply goal the operator Q is immediately
applicable. For a reduce goal, the recursion may stop, with failure, when all relevant
operators have been tried and have failed.

Selection of Operators

In trying to transform object A to object B, the transform method uses a matching
process to discover the differences between the two objects. The possible types of
difference are predefined and ordered by estimated difficulty, for each kind of task. The
most difficult difference found is the one chosen for reduction. A domain-dependent data
structure called the Table of Connections lists the operators relevant to reducing each
difference type.

Depth Bounds

Several heuristics are provided to prevent GPS from following a false path indefinitely.
Some of the bases on which a current goal may be abandoned, at least temporarily, are the
following:

1. Each goal should be easier than its parent goal.

—_—— |
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2. Of a pair of AND nodes reprosenting subgoals generated by transform or
apply, the second subgoal attempted should be easier than the first.

3. A newly generatod objact should not be much larger than the objects
occurring In tha topmost goal.

4. Once a goal has boon generated, tho identical goal should not be
gonerated agaln.

An Example

Tha first task onvironment to which GPS was applied was the domain of the Logic
Theorist: proving theorems in tha propositional calculus. The initial and desired objects were
exprassions, ona to be transformed into the othar by means of operators representing rules »
of inference. There were twelve oparators altogather, including the following rules. (The >
symbol "==>" means "may be rowritten as.")

Rule 1. AvB == BVvA
AAB == BAA

Rule 6.  AvB <(==) ~(~AA~B)
Rule 6. A>B (==) ~Av8B
Six possible difference types were racognizaed:

(a) occurrence of a variabla in one exprassion but not the other,

(b) occurrence of a varlablo a differant number of times In the two
axprassions,

(c¢) difference in sign,

(d) differance In binary connective,

(e) difference In grouping, and

(f) differance In position of components.

The list just given Is In decreasing ordor of assumed difficulty. Every difference between
main expressions, however, was considerad more difficult than any difference between
subexpressions.

With this background, a traca (slightly simplitiod) of GPS's performance on a simple
sxample can be given. The problem is to transform the Initial expression

RA (~P>Q),

Gt Y nto the desirad axpression

(QvP)AR,

w Lrace s shown balow.
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Goal 1: Transtorm L1 into LO.
Goal 2: Reduce positional diftarence batwoon L1 and LO.
Goal 3: Apply Rule 1 to L1,

Return L2: (~P > Q)AR
Goal 4: Transform L2 into LO.
Goal 6: Reduce difference In connective between
laft subexpressions of L2 and LO.
Goal 6: Apply Rule 6 to left part of L2,
Goal 7: Raduca differance in connactive
batwoeen left part of L2 and
pracondition for Rule 6.
Reject goal 7 as no easier than goal &.
Goal 8: Apply Rule 6 to laft part of L2.
Return L3: (PvQ)AR

Goal B: Transtorm L3 into LO.

Goal 10: Reduce positional difterence
between left parts of L3 and LO.

Goal 11: Apply Ruie 1 to left part of L3.
Roturn Ld: (Qv P)AR
Goal 12: Transtorm L4 to LO.

No difference exists, so problem is solved.

The Problem of Generality

GPS was Intendad to modeal genearality in problem solving through use of the broadly
applicable techniques of houristic search, and the strategy of means-ends analysis in
particular.  The Implementation of theso techniques was deopendont on the internal
reprasontation of objects and oporators. These ropresentations, In early versions of GPS,
weare nicely sulted to logic tasks like the examploe above. But they were inadequate for
many other kinds of heuristic search probloms. Befora trast's extensions to the program
(Ernst & Newaell, 1069), GPS had in fact solved only two problems outside the logic domain

The object of trnst's work was to extond the number of Kinds of problems that GPS
could handle while holding Its power at a constant level. Ona of his goneralizations was in
the representation of objects. tarlier, a desired object had had to be specitiod by giving Its
exact form. Forms containing variablos and lists of forms could be used If necassary. But
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these too were Inadequate for representing symbolic integration problems, in which the
desired object is any form whatever that does not contain an integral sign. Hence the
description of a desired object by a list of constraints was introduced.

Another change was in the representation of operators, originally specified by giving
the form of the input object and the form of the resulting output object. For some kinds of
problems, it was desirable to have other tests of applicability besides the form of the input
object, and to be able to describe the output object as a function of the input. A third
change enabled GPS to deal with unordered sets of symbols, eliminating the need for special
operators to permute their elements.

The generalized program succeeded in solving problems of 11 different kinds including
symbolic integration, resolution theorem proving, and a variety of puzzles. Each
generalization, however, entailed changes in the ways the problem representations could be
processed, and these led in turn to deterioriation with respect to the kinds of differences
that could be detected. The only representable differences became "local" ones. An
example of a global difference, which GPS could no longer recognize, was the total number of
times a varlable occurred in a logic formula. Consequently, theorem proving in the
propositional calculus was not among the eleven tasks that the final version of GPS could do.

In the task domains in which GPS did succeed, it could solve only simple problems; and
those, less efficiently than special-purpose problem solvers. If a long search was required,
it ran out of memory space; and even casy problems, if they needed objects as comniex as a
chess position, quickly exhausted memory on a machine with 65K words. But GPS was not
expected to be a performance program. What it yielded, in its authors' view, was "a series
of lessons that give a more parfect view of the nature of problem solving and what Is
required to construct processes that accomplish it" (Ernst & Newell, 1968, p. 2). Although
additional generalizations, such as game playing, were considered feasible, the authors
concluded that GPS needed no further programming accretions and recommended that it be
lald to rest.

References

See Ernst & Newell (1969), Newell & Ernst (1865), Newell, Shaw, & Simon (19860),
Newell & Simon (1863), and Newell & Simon (1972).
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DJ3. Gelernter's Geometry Theorem=-proving Machine

Herbert Gelernter's geometry theorem-proving machine was a program written in 1959
at the |BM Research Center in New York. The program was written In an extended FORTRAN,
the FORTRAN List Processing Language, and implemented on an IBM 704 computer. The |
purpose of the program was to solve problems taken from high-school textbooks and final
examinations in plane geometry. As with Newell, Shaw, and Simon's Logic Theorist, which
proved theorems In the propositional calculus, the fact that there were algorithms for solving
problems in these domains was considered irrelevant, since the object was to explore the
use of heuristic methods in problem solving.

T ARESRIS 1S R

IR, &

The formal system within which the geometry program worked contained axioms on A
parallel lines, congruence, and equality of segments and angles. This set of axioms, which b 4
was not meant to be either complete or nonredundant, was along the lines of an elementary 5
textbook. The axioms played the role of problem-reduction operators. Some examples are: nj
(a) To show that two line segments ara equal, show that they are corresponding elements of . j
congruent triangles; (b) to show that two angles are equal, show that they are both right R |
angles; and (c) to show that two triangles are congruent, show the equality of a side and
two angles in corresponding positions, or of an angle and two sides. The operators for r y

.
1
|
|

establishing congruence split the problem into three subproblems, each to be solved 3

separately by showing equality for ona pair of elements. Newell and Simon (1972, p. 138)

indicate that the geometry machinc was the first program that was able to handle conjunctive

subgoals. The program works backwards from the theorem to be proved, recording its vy
progress in what amounted to an AND/OR tree (Article B2). i

Some examples of problems solved by the program were the following:

1. Given that angle ABD equals angle DBC, that segment AD is perpendicular to segment
AB, and that segment DC is parpendicular to segment BC, show that AD equals CD.

o 9

e
g

Figure 1. Diagram for problem 1.

2. Given that ABCD is a quadrilateral, with segment BC parallel to segment AD and with
BC equal to AD, show that segment AB equals segment CD.

Figure 2. Diagram for problem 2.
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A problem was given to the program in the form of a statement describing the premises
and the goal. A proof was a sequence of statements giving the reduction of the goal to
trivial goals--ordinarily, goals to establish an already established formula. One feature used
to reduce the search effort needed to find a proof was the recognition of syntactic symmetry.
Some examples of symmetric pairs of goals are the following:

a. If d(x,y) is the distance from point x to point y, then d(A,B) = d{C,D) is
symmetric with d(D,C) = d(A,B).

b. If ABCD is a parallelogram and point E is the intersection of its diagonals AC
and BD, then d(A,E) = d(E,C) is symmetric with d(B,E) = d(E,D).

The recognition of symmetry was used in two ways. First, if a given goal was ever reduced
to a subgoal symmetric with it, the subgoal could be rejected as representing circular
reasoning. Second, if parallel goals A and B were syntactically symmetric and goal A had
been established, then goal B could be established by symmetry--in effect by saying, for the
second half of the proof, "Similarly, B."

The most notable feature of the program, however, was an additional part of the
problem statement used to avoid attempting proofs by blind syntactic manipulation alone.
This input was a diagram, similar to Figures 1 and 2 (although specified by lists of
coordinates), of the points and line segments mentioned in the theorem. The particular input
figure was chosen to avoid spurious coincidences and reflect the greatest possible
generality. Whenever a subgoal was generated, it was checked for consistency with the
diagram. [f false in the diagram, the subgoal could not possibly be a theorem and therefore
could be pruned from the search tree. A slight qualification is that finite precision arithmetic,
applied to the diagram, occaslonally caused a provable subgoal to be pruned erroneously; but
It was reported that the program had found other paths to the solution in such cases. It was
astimated that the use of a diagram, together with the discard of subgoals representing
circular reasoning, eliminated about 895 out of every thousand subgoals.

The diagram also served a second purpose: |t provided an additional criterion by which
a problem could be considered primitive. For example, a rigorous proof of the theorem in
problem 1 would require showing that DB is a line segment and that BCD and BAD are
triangles. The axioms needed would have been (a) if X and Y are distinct points, then XY is a
line segment; and (b) If X, ¥, and Z are three distinct non-collinear points, then XYZ is a
triangle. fFor a limited class of such properties, the program did nat require formal proof but
rather considered them established if they were true in the diagram. It recorded explicitly
the assumptions that hed been made based on the diagram.

The central loop of the program repeatedly selects the next goal to try. Two heuristics
were included for goal selection. One gave highest priority to classes of goals, such as
ldentities, that could usually be established in one step. The sacond assigned a "distance"
between the goal statement and the set of premise statements; after the one-step goals
had been developed, the remaining goals were selected in order of increasing distance from
the premise set.

Once a goal was chosen for development, the action taken depended on its status.
Ordinarily, It would be reduced to subgoals and the subgoals, if consistent with the diagram
but not sufficilent to establish the current goal immediately, would be added to the list of
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goals to try. If no new acceptable subgoals were generated, the program checked whether
a construction was possible--a construction being the addition to the premises of the problem
of a line segment between two existing but previously unconnected points. The new
segment would be extended to its intersections with other segments in the figure. New
points could be added to the premises only If generated by such intersections.

A goal for which a construction was found possible was saved--to be tried again later
if all goals not requiring construction should be exhausted. |f the goal was later selected for
a second try, a construction would be made and the problem started over with an expanded
premise set. An example of the use of this tachnique occurs In problem 2, where in
considering the goal AB = CD, the program generated a subgoal of showing that triangies ABD
and CDB were congruent. The subgoal makes sense only If a line segment BD exists, so the
segment Is constructed, and the proof eventually succeeds.

References

See Elcock (1977), Gelernter (1959), Gelernter (1863), Gelernter, Hansen, &
Gerberich (1960), Gelernter, Hansen, & Loveland (1963), Gelernter & Rochester (1968), and
Gllmore (1870).
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D4. Symbolic Integration Programs

Slagle's SAINT

James Slagle's SAINT program (Symbolic Automatic INTegrator) was written as a 1961
doctoral dissertation at MIT. The program solves elementary symbolic integration problems--
mainly indefinite integration--at about the level of a good college freshman. SAINT was
written in LISP and run interpretively on the IBM 7090.

The kinds of questions Slagle intended his thesis to address were some of the earliest
questions for Al. They included, for example, "Can a computer recognize the kinds of
patterns that occur in symbolic expressions? Just how important is pattern recognition? .
Can intelligent problem solving behavior really be manifested by a machine?" (Slagle, 1961,
p. 8). The domain of symbolic integration was chosen as a source of well-defined, familiar,
but nontrivial problems requiring the manipulation of symbolic rather than numerical
expressions.

The Integration problems that SAINT could handle could have only elementary functions
as integrands. These functions were defined recursively to comprise the following:

Constant functions.

The identity function.

Sum, product, and power of elementary functions.

Trigonometric, logarithmic, and inverse trigonometric functions of
elementary functions.

BN -

Three kinds of operations on an lntegrand were avallable:

1. Recognize the integrand as an instance of a standard form, thus obtaining the
result immediately by substitution. Twenty-six such standard forms were

used. A typical one indicated that if the integrand has the form ¢V dv, the
form of the solution Is (¢")/(In c).

2. Apply an ‘"algorithm-like transformation" to the integral--that is, a
transformation that is almost guaranteed to be helpful whenever it can be
applied. Eight such transformations were provided, including (a) factoring out
a constant and (b) decomposing the integral of a sum into a sum of integrals.

3. Apply a "heuristic transformation“--that Is, a transformation carrying
significant risk such that, although applicable, it might not be the best next
step. The 10 heuristic transformations included certain substitutions and the
technique of integration by parts. One technique that was not implemented
was the method of partial fractions.

The program starts with the original problem as a goal, specified as an integrand and a
variable of integration. For any particular goal, the strategy is first to try for an immediate
solution by substitution into a standard form; failing that, to transform It by any applicable
algorithm-like transformation; and finally to apply each applicable heuristic transformation in

WO

DR, & Rt o .



Search 81

turn. Both the algorithm-like and the heuristic transformations, however, generate new goals,
to which the same strategy may be applied. The result is an AND/OR graph of goals (Article
B2).

The order in which goals are pursued by SAINT depends heavily on what operations can
be applied to them. At the level of heuristic transformations, the algorithm is an ordered
search: A list, called the Heuristic Goal List, keeps track of goals on which progress can be
made only by applying heuristic transformations--that is, integrands that are not of standard
form nor amenable to any algorithm-like transformation. To each goal on this list is attached
an estimate of the difficuity of achieving it. The measure of difficulty used is the maximum
level of function composition in the integrand. Other characteristics of the goal, such as
whether it Is a rational function, an algebraic function, a rational function of sines and
cosines, and the like, are also stored as an aid to determining which heuristic transformations
will in fact apply. The outer loop of the program repeatedly selects the goal that looks the
easiest from the Heuristic Goal List, expands it by applying all applicable heuristic
transformations, and possibly, as a result of the expansion, adds new elements to the
Heuristic Goal List. The program terminates with failure if it runs out of heuristic goals to work
on or If it exceeds a pre-set amount of working space.

An important qualification to this process concerns the use of standard forms and
algorithm-like transformations. As soon as any new goal is generated (or the original goal
read in), an immediate solution of it is attempted. The attempt consists of, first, checking
whether the integrand is a standard form; if it is not, checking whether an algorithm-like
transformation applies; and if one does, applying it and calling the immediate solution
procedure recursively on each goal resulting from that transformation. When the recursion
terminates, either the generated goal has been achieved or there is a set of goals--the
generated goal itself or some of its subgoals--to be added to the Heuristic Goai List. During
expansion of a node (one iteration of the outer loop), new heuristic goals are accumulated in
a temporary goal list; only after expansion is complete are their characteristics computed
and the additions made to the Heuristic Goal List.

Whenever a goal is achieved, the implications of its achievement are immediately
checked. If it is the original goal, the program terminates successfully. Otherwise, if it was
achleved by substitution into a standard form, it may cause the achievement of one or more
parent goals as well. If it was achieved by solution of a sufficient number of its
subproblems, it may not only cause its parent or parents to be achieved in turn, but may also
make others of its subproblems, which have not yet been solved, superfivous. These checks
are implemented in a recursive process, referred to as "pruning the goal tree," that is
initlated as soon as any goal is achieved. Thus a heuristic goal can be achieved without
having been fully expanded.

Moses's SIN

A second important symbolic integration program, SIN (Symbolic INtegrator), was written
by Joel Moses in 1969, also as a doctoral disscrtation at MIT. Its motivation and its strategy
as an Al effort were quite different from those of SAINT. Whereas Slagle had compared the
behavior of SAINT to that of freshman calculus students, Moses aimed at behavior
comparable to expert human performance. He viewed SAINT as emphasizing generality in
that it axamined mechanisms, like heuristic search, that are useful in many diverse problem
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domains. SIN, in contrast, was to emphasize expertise in a particular, complex domain. To do
this, It concentrated on problem analysis, using more knowledge about integration, than SAINT
had employed, to minimize the need for search. In fact, Moses did not view SIN as a heuristic
search program. Hence, the program will be described only briefly here; and a second part of
Moses's dissertation, a differential equation solver called SOLDIER, will not be described.

SIN worked in three stages, each stage being capable of solving harder problems than
the stage before. Stage 1 corresponded roughly to Slagle's immediate solution procedure
but was more powerful. It used a table of standard forms; two of Slagle's algorithm-like
transformations; and, most Importantly, a method similar to one of Slagle's heuristic
transformations, referred to as the Derivative-divides method. The idea behind this grouping
of methods was that they alone would be sufficient to solve the most commonly occurring
problems, without invoking the computationally more expensive machinery of the later stages.

A problem that stage 1 could not solve was passed on to stage 2. This stage
consisted of a central routine, called FORM, and 11 highly specific methods of integration.
(One of these methods was a program for integrating rational functions that had been written
by Manove, Bloom, and Engelman, of the MITRE Corporation, in 1964.) In general, the task of
FORM was to form a hypothesis, usually based on local clues in the integrand, about which
method, if any, was applicable to the problem. Only rarely did more than one method apply.
The routine chosen first tried to verify its applicability; if it could not, it returned to let FORM
try again. If the routine did verify the hypothesis, however, SIN then became committed to
solving the problem by that method or not at all. The method chosen either solved the
problem using mechanisms internal to it or transformed the problem and called SIN recursively
to solve the transformed problen.

Stage 3 of SIN was invoked, as a last resort, only if no stage 2 method was applicable.
Two general methods were programmed here. One method was integration-by-parts, which
used blind search, subject to certain constraints, to find the appropriate way to factor the
integrand. The other was a nontraditional method based on the Liouville theory of integration
and called the EDGE (EDucated GuEss) heuristic. This method involved guessing the form of
the integral. The EDGE heuristic was characterized as using a technique similar to means-
ends analysis, If its guess did not lead directly to a solution.

Performance of SAINT and SIN

SAINT was tested on a total of 86 problems, 54 of them chosen from MIT final
examinations in freshman calculus. It succeeded in solving all but two. The most difficult
problem it solved, both In terms of time and the number of heuristic transformations occurring
Iin the solution tree (four), was the integral of

1 + (sec t)% - 3(tan t)

Slagle proposed additional transformations that would have handled the two failures, which
were the integrals of

x(1+x)/2 dx and cos(x'?) dx .
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SIN, in contrast, was intended to model the behavior of an expert human integrator.
The results of running SIN on all of Slagle's test problems were that more than half were
solved in stage 1, and all but two of the rest (both of which used integration by parts) were
solved in stage 2. After adjusting for the facts that SAINT and SIN ran on different machines
and that one was interpreted and the other compiled, and for other factors making the
programs difficult to compare, Moses estimated that SIN would run on the average about
three times faster than SAINT. Taking into account a test on more difficult problems as well,
he expressed the opinion that SIN was “capable of solving integration problems as difficult
as ones found in the largest tables" (p. 140) and that it was fast and powerful enough for

use in "a practical on-line algebraic manipulation system" (p. 6). For later developments in
this direction, see Applications.Macsyma.

References

See Manove, Bloom, & Engelman (1968), Moses (1967), Slagle (1861), and Slagle
(1963).
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D6. STRIPS

STRIPS is a problem-solving program written by Richard Fikes and Nils Nilsson (1971) at
SRI international. Each problem for STRIPS is a goal to be achieved by a robot operating in a
simple world of rooms, doors, and boxes. The solution is a sequence of operators, called a
plan, for achieving the goal. (For a review of the various senses of the word plan, see
Planning). The robot's actual execution of the plan is carried out by a separate program, 1
distinct from STRIPS. A later (1972) addition to the basic STRIPS system permits plans to be ]
generalized and used again, giving the system some capacity for learning. 1

e e bdeci '

The Basic STRIPS System

The world model. The world in which the STRIPS robot works consists of several
rooms connected by doors, along with some boxes and other objects that the robot can
manipulate. STRIPS represents this world by a set of well-formed formulas in the first-order
predicate calculus (see ReprasentationLogic). Some formulas in the world model are static
facts, such as which objects are pushable and which rooms are connected. Other facts,
such as the current location of objects, must be changed to reflect the actions of the robot.

Operators. The primitive actions available to the robot are represented by operators.
Typical operators include going somewhere and pushing an object somewhere, the locations
being given as paremeters. Each operator has preconditions to its applicability; to push a box,
for example, the robot must first be next to the box. The application of an operator is
realized by making changes in the world model. The appropriate changes are given by a
delete list and an add list, specifying the formulas to be removed from and added to the world
model as a result of the operation. Thus, each operator explicitly describes what it changes

in the world model.

A typical operator is GOTOB, which denotes the robot's going up to an object in the
same room:

GOTOB (bx) "go to object bx"
Preconditions: TYPE(bx,0BJECT) and
THERE EXISTS (rx) [INROOM(bx,rx) and INROOM(ROBOT,rx)]
Delete list: AT(ROBOT,*,*), NEXTTO(ROBOT,*)
Add list: NEXTTO{ROBOT,bx)

The precondition statement requires that bx be an object and that both bx and the robot be
in the same room, rx. The asterisks in the delete list represent arguments with any values

whatever. ﬁ

Method of operation. STRIPS operates by searching a space of world models to find
one In which the given goal is achieved. It uses a state-space representation in which each
state Is a pair (world model, list of goals to be achieved). The initial state is (MO, (GO)),
whare MO Is the Initial world model and GO the given goal. A terminal state gives a world
mo«ial in which no unsatisfied goals remain. i

Given a goal G (stated as a formula in the predicate calculus), STRIPS first tries to
prove that G Is satisfied by the current world model. To do this, the program uses a modified
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version of the resolution-based theorem prover QA3 (Garvey & Kling, 1969). Typically the
proof fails, within a pre-specified resource limit, because no more resolvents can be formed
(see Theorem Praving.Resolution). At this point, STRIPS needs to find a different worid
model which the robot can achieve and which satisfies the goal. Because this task is

complicated for a simple theorem prover, the system switches to a means-ends analysis similar
to that of GPS (Article D2).

To do the means-ends analysis, the program extracts a difference between the goal and
the current model and selects a "relevant" operator to reduce the difference. The
difference consists of any formulas from the goal that remain outstanding when the proof
attempt is abandoned (pruned, if this set is large). A relevant operator is one whose add list

contains formulas that would remove some part of the difference, thereby allowing the proof
to continue.

If the operator is applicable, the program applies it and tries to achieve the goal in the
resulting model; otherwise, the operator's precondition becomes a new subgoal to be
achieved. Since there may be several relevant operators at each step, this procedure

generates a tree of models and subgoals. STRIPS uses a number of heuristics to control the
search through this tree.

An Example of the Basic System's Performance

As a simple example, suppose the robot is in ROOM1 and the goal is for it to be next to
BOX1, which is in adjacent ROOM2. The initial world model MO contains such clauses as

INROOM (ROBOT,ROOM1),

INROOM (BOX1,ROOM2),

TYPE (BOX1,0BJECT),

CONNECTS (DOOR12,ROOM1,ROOM2),
STATUS (DOOR12,0PEN), . ..

and the goal GO is

G8 = NEXTTO (ROBOT,BOX1) .

GO is not satisfied, and the difference between it and the initial model is
~NEXTTO (ROBOT,BOX1). STRIPS determines that GOTOB (bx), defined above, is a relevant
operator, with bx instantiated as BOX1. The operator instance GOTOB (BOX1), denoted OP1,
Is not immediately applicable (because the robot is in the wrong room), so its precondition G1,

Gl = TYPE (BOX1,0BJECT) and
THERE EXISTS (rx) [INROOM (BOX1,rx) and INROOM (ROBOT,rx)]

becomes a new subgoal. Relevant operators for reducing the difference between G1 and
the Initial model MO are: OP2 = GOTHRUDOOR (dx,ROOM2) and
OP3 = PUSHTHRUDOOR (BOX1,dx,ROOM1) (i.e., move the robot to the room with the box, or

move the box to the room with the robot). If the former course (the better one, obviously) is
selected, the precondition
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G2 = STATUS (dx,OPEN) and NEXTTO (ROBOT,dx) and
THERE EXISTS (rx) [INROOM (ROBOT,rx) and CONNECTS (dx,rx,ROOM2)]

is the new subgoal. The difference ~NEXTTO (ROBOT,DO0OR12) can be reduced by the
operator OP4 = GOTODOOR (DOOR12), which is applicable immediately. Applying OP4 adds the
clause NEXTTO (ROBOT,DOOR12) to the model, creating a new world model M1. G2 is now
satisfied with dx = DOOR12, so OP2 can be instantiated as GOTHRUDOOR (DOOR12,ROOM2)
and applied. This deletes the clause INROOM (ROBOT,ROOM1) and adds
INROOM (ROBOT,ROOM2). G1 is now satisfied, so OP1 is applied, deleting
NEXTTO (ROBOT,D00R12) and adding NEXTTO (ROBOT,BOX1), the desired goal. The final plan
Is thus:

OP4: GOTODOOR (DOOR12)
OP2: GOTHRUDOOR (DOOR12,ROOM2)
OP1: GGTOB (BOX1)

The corresponding solution path through the state space tree is as follows:

(M8, (G8))
(M8, (61, G0))
(M8, (G2, Gl, G8))
0P4
(M1, (61, 68))
opP2
(M2, (G8))
op1
(M3, ())

Generalization of Plans

In the basic STRIPS system, each new problem was solved from scratch. Even if the
system had produced a plan for solving a similar problem previously, it was not able to make
any use of this fact. A later version of STRIPS provides for generalizing plans and saving
them, to assist both in the solution of subsequent problems and also in the intelligent
monitoring of the robot's execution of the particular plan.

Triangle tables. A specific plan to be generalized, say (OP1, OP2, ..., OPn), is first
stored in a data structure called a triangle table. This is a lower triangular array representing
the preconditions for and effects of each operator in the plan. Some of its properties are
the following:

1. Cell (i,0) contains clauses from the original model that are still true when
operator | is to be applied and that are preconditions for operator i, OPi.
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2. Marked (starred) clauses elsewhere in row i are preconditions for operator i
added to the model by previous operators.

3. The effects of applying operator i are shown in row i+1. The operator's add
list appears in celi (i+1, i). For each previous operator, say operator j,
clauses added by operator j and not yet deleted are copied into cell (i+1,j).

4. The add list for a sequence of operators 1 through i, taken as a whole, is
given by the clauses in row i+1 (excluding column 0).

6. Tto preconditions for a sequence of operators i through n, taken as a whole,
are given by the marked clauses in the rectangular sub-array containing row i
and cell (n+1, 0). This rectangle is called the i-th kernel/ of the plan.

The triangle table for the previous example is shown below. Operators have been
renumbered in the order of their use.

*INROOM( ROBOT orl
1 ROOM1%| GOTODOOR(D12)
*CONNECTS(D12
ROOM1, ROOM2 )
* INROO¥ (ROBOT oP2
2 ROOM1Y| *NEXTTO GOTHRUDOOR
*CONNECTS(D12,| (ROBOT,D12) | (D12,R00M2)
ROOM1,ROOM2 )
*STATUS (D12,
OPEN)
*INROOM(BOX1, oP3
3 ROOM2)| NEXTTO * INROOM GOTOB(BOX1)
*TYPE(BOX]1, (ROBOT,D12) | (ROBOT,ROOM2)
OBJECT)
4 INROOM NEXTTO
(ROBOT,R00M2)| (ROBOT,BOX1)

Figure 1. A triangle table.

Method of Generalization. The plan is generalized by replacing all constants in each of
the rlauses in column O by distinct parameters and the rest of the table with clauses that
assume that no argument to an operator has been instantiated. The result may be too
general, so the proof of the preconditions for each operator is run again, noting any
substitutions for parameters that constrain the generality of the plan. Some further
corrections are made for remaining overgeneralization, which might make the plan either
inconsistent or inefficlent In use. Finally, the generalized plan, termed a MACROP, is stored
away for future use.
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In the example above, the generalized plan would be

GOTODOOR (dx)
GOTHRUDOOR (dx,rx1)
GOTOB (bx)

with preconditions: INROOM (ROBOT,rx2)
CONNECTS (dx,rx2,rx1)
STATUS (dx,0PEN)
INROOM (bx,rx1)
TYPE (bx,0BJECT)

and add list: NEXTTO (ROBOT,bx)
INROOM (ROBOT,rx1)

That is, the generalized plan sends the robot from any room through a connecting door to an
object in the adjacent room.

Using the MACROP to guide execution. When STRIPS produces a detailed pian to
achieve a goal, it does not necessarily follow that the robot should execute the plan exactly
as given. One possibility is that some action fails to achieve its expected effect, so that
the corresponding step of the plan needs to be repeated. Another is that the plan found is
less than optimal and would be improved by omitting some steps entirely. The necessary
flexibility during execution is provided by using the MACROP rather than the detailed plan in
monitoring the robot's actions.

At the beginning of execution, the parameters of the MACROP are partially instantiated
to the case at hand. The robot then attempts, at each stage, to execute the highest
numbered step of the plan whose preconditions are satisfied. This procedure omits
unnecessary steps and allows repeated execution, possibly with changed parameters, of a
step that has failed. If there is no step whose preconditions are satisfied, replanning
occurs. Determining which step can be done next is accomplished by a scan that exploits
the design of the triangle table.

Using MACROPs in planning. When STRIPS is given a new problem, the time it takes to
produce an answer can be reduced very considerably if there exists a MACROP that can be
incorporated into its solution. The MACROP given above, for example, could be used as the
first part of a plan to fetch a box from an adjacent room. The part of the MACROP consisting
of its first two suboperators, if used alone, would also give a ready-made solution to the
problem "Go to an adjacent room"; or it could be used repeatedly in solving "Go to a distant
room."

The triangle table provides the means of determining whether a relevant macro
operator exists. To determine whether the sequence of operators 1 through i of the MACROP
is relevant, STRIPS checks the add list of this sequence as given by the i+1tk row of the
table. Once a MACROP is selected, irrelevant operators are edited out by a staightforward
algorithm, leaving an economical, possibly parameterized operator for achieving the desired
add list. The operator's preconditions are taken from the appropriate cells of column O.
Thus, almost any sub-sequence of operators from a MACROP can become a macro operator in
a new plan. To keep new MACROPs from producing an overwhelming number of different
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operators that must be considered during planning, the system contains provisions for
preventing consideration of redundant parts of overlapping MACROPs and for deleting
MACROPs that have been completely subsumed by new ones.

In a sequence of problems given to STRIPS, the use of MACROPs in some cases
reduced planning time by as much as two-thirds. The longest plan so formed, consisting of
11 primitive operations, took the robot from one room to a second room, opened a door
leading to a third room, took the robot through the third room to a fourth room, and then
pushed two pairs of boxes together. One drawback noted by the authors was that, however
long the solution sequence, STRIPS at each stage of its search dealt with every operation in
complete detail. A later program, Sacerdoti's ABSTRIPS (Article DB), provides the mechanism
for deferring the details of the solution until after its main outline has been completed.

References

See Fikes & Nilsson (1871), Fikes, Hart, & Nilsson (1972), and Garvey & Kling (1969).
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D6. ABSTRIPS

A combinatorial explosion faces all problem solvers that attempt to use heuristic search
in a sufficlently complex problem domain. A technique called Aierarchical search or hierarchical
planning, implemented In Earl Sacerdoti's ABSTRIPS (1074), is an attempt to reduce the
combinatorial problem. The idea is to use an approach to problem solving that can recognize
the most significant features of a problem, develop an outline of & solution in terms of those
features, and deal with the less important details of the problem only after the outline has
proved adequate.

The Implementation of this approach involves using distinct levels of problem
representation. A simplified version of the probicm, from which details have been omitted,
occurs In a higher level problem space or abstraction space; the detailed version, in a ground space.
By a slight extension, providing for several levels of detail instead of just two, a hierarchy of
problem spaces is obtained. In general, each space in the hierarchy serves both as an
abstraction space for the more detalled space just balow it and as a ground space with
respect to the less detalled space just above.

Background-=-The STRIPS System

ABSTRIPS is a modification of the STRIPS system, described in Article D5. The problem
domain for both programs Is a world of robot planning. In both, the program Is given an Initial
state of the world, or world model, consisting of a set of formulas that describe the floor plan
of a group of rooms and other facts such as the location of the robot and other objects
within these rooms. The goal state to be achieved is also given. The elements of a solution
sequence are operators repraesenting robot actions; examples are operators for going up to an
object, pushing an object, and going through a door. The definition of each operator contains
three kinds of formulas: (a) its ;:rccondiziom. representing statements that must be true of a
world model in order for the operator to be applicable; (b) its add list, a list of formulas that
will become true and should be added to the world mode! when the operator is applied; and
(c) Its delete list, a corresponding list of formulas to be decleted from the model upon
application of the operator. The scarch for a sequence of operators producing the desired
world model is guided by a means-ends analysis similar to that of GPS (Article D2).

Abstraction Spaces

Given the world models and operator descriptions of the basic STRIPS system, the first
question is how to define the "details” that are to be ignored in the first pass at a solution.
Sacerdoti's answer was to treat as details certain parts of the operator preconditions. At all
levels of abstraction, the world models and the add and delete lists of operators remain
exactly the same. Such a definition of "details" was found to be strong enough to produce
real improvements in problem-solving efficiency, while keeping a desirable simplicity in the
relationship between each abstraction space and its adjacent ground space.

The preconditions for an operator are stated as a list of predications, or literals,
concerning the world model to which the operator is to be applied. The relative importance
of literals Is Indicated by attaching to cach a number callad its criticality value. The hierarchy
of problem spaces is then defined in terms of levels of criticality: In the space of criticality
n, all operator preconditions with criticality less than n are ignored.

A = s S e e e e b il i et

D ———

ey

-



Search 21

The assignment of criticality values is done Just once for a given definition of the
problem domain. The general ideas to be reflected In the assignment are the following:

1. If the truth value of a literal cannot be changed by any operator in the
problem domain, it should have the highest criticality.

2. If the preconditions for an operator include a literal L that can be
readily achiaved once other preconditions for the same operator are
satisfied, then L should be less critical than those other preconditions.

3. If the possibility of satisfying literal L depends on additional
preconditions besides those referred to in (2), then L should have high
but less than maximum criticality.

The actual assignment of criticalitias is done by a combination of manual and automatic
means. First, the programmer supplics a partial ordering of all predicates that can appear in
operator preconditions. The partial ordering serves two purposes: It supplies a tentative
criticality value for all Instances of each predicate, and it governs the order in which the
program will consider literals for possible increases (but not decreases) in criticality.

As an example, consider an operator TURN-ON-LAMP (x), with preconditions

TYPE (x,LAMP) and THERE EXISTS (r) [INROOM (ROBOT,r) and
INROOM (x,r)) and PLUGGED-IN (x) and NEXTTO (ROBOT,x)] .

The partial ordering of predicates, reflecting an Intuitive view of their relative Iimportance,
might be as follows:

Predicate Rank
TYPE 4
INROOM 3
PLUGGED=-IN 2
NEXTTO 1

Figure 1. Initial ranking of predicates.

The assignment algorithm, whose output Is summarized in the figure below, would first find
that the truth of TYPE (x,LAMP) is beyond the power of any operator to change and
therefore would set its criticality to the maximum; in this case, 6. Then it would find that
TYPE (x,LAMP) is an insufficient basis for achieving INROOM (ROBOT,r) or INROOM (x,r); so
these two literals would have their criticality raised to the next highest vaiue, 6. Next
PLUGGED-IN (x) Is considered, and a plan to achieve PLUGGED-IN (x) Is found using only the
literals already processed as a starting point. Hence, the PLUGGED-IN literal retains its
tentative criticality of 2, and, similarly, NEXTTO (ROBOT,x) is given criticality 1. The result,
after similar processing ot the preconditions of the other operators in the domain, is a
hlerarchy of at least four, and possibly six, distinct problem spaces.
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Literal Criticality Value

TYPE (x,LAMP)
INROOM (ROBOT,r)
INROOM (x,r
PLUGGED~IN
NEXTTO (ROB

Figure 2. Final criticality of literals.

Xx)
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Control Structure

A problem statement for ABSTRIPS, as for STRIPS, consists of a description of the state
of the world to be achieved. A solution is a plan, or sequence of operators, for achieving It.
ABSTRIPS proceeds by forming a crude plan at the highest level of abstraction and
successively refining it. The executive is a recursive program taking two parameters: the
current level of criticality, defining the abstraction space in which planning is to take place,
and a list of nodes representing the plan to be refined. Before the initial call, criticality is
set to the maximum, and the skeleton plan is initialized to a single operator--a dummy--
whose preconditions are precisely the goal to be achieved. ABSTRIPS computes the
difference between the preconditions and the current world model, finds operators relevant
to reducing the difference and, if necessary, pursues subgoals of satisfying the
preconditions of the selected operators. During this process, any preconditions of less than
the current criticality are ignored. A search tree is built from which, if the process
succeeds, a fuller operator sequence leading from the Initial world model to the goal can be
reconstructed. This new skeleton plan, together with the next lower criticality level, are
passed recursively to the executive for the next round of planning.

The search strategy used by ABSTRIPS can be called length-first, in that the executive
forms a complete plan for reaching the goal in each abstraction space before considering
plans In any lower level space. This approach has the advantage that it permits early
recognition of dead ends, thus reducing the work wasted in extending the search tree along
fruitiess paths involving detailed preconditions. If a subproblem in any particular space
cannot be solved, control is returned to its abstraction space, and the search tree is
raestored to its previous state in that space. The node that caused the failure in the lower
level space is eliminated from consideration and the search is continued in the higher level
space. This mechanism, an example of backtracking, suffers from the problem that no
information is available at the higher level on what caused the plan to fail.

L]

Because backtracking can be inefficient and also because each operator in an
abstraction space may be expanded to several operators in the ground space, it is important
for ABSTRIPS to produce good plans at the highest level. Two modifications to STRIPS were
made to try to insure that it would do so.

First, whereas a STRIPS search tended to be depth-first and therefore sometimes found
non-optimal solutions, ABSTRIPS makes the order of expanding nodes in the search tree
dependent on the level of abstraction. At the highest level it uses an evaluation function that
may Increase the search effort but which insures that the shortest possible solution
sequence will be found. (See Article C3b on A*.)




T

T SRR

Search 293

The second change relates to the instantiation of operator parameters, in cases where
two or more choices seem equally good. While STRIPS made a choice arbitrarily, ABSTRIPS
defers the choice until a greater level of detail indicates one to be preferable. Backtracking
can still occur should the choice be mistaken.

Performance

ABSTRIPS and STRIPS were compared on a sequence of problems. One of the longest,
needing 11 operators for its solution, required the robot to open a door, go through the
adjacent room to another room, push two boxes together, and then go through two more
doors to reach the room where it was to stop. The basic STRIPS system required over thirty
minutes of computer time to find the solution; ABSTRIPS used 5:28 minutes and generated
only half the number of search-tree nodes. It was noted that by the time ABSTRIPS reached
the most detalled level, it had in effect replaced the original large problem by a sequence of
7 easy subproblems.

References

See Sacerdoti (1974).
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